WAMSI KMRP PROJECT 1.4 REMOTE SENSING

Peter Fearns & Jim Greenwood

I would like to acknowledge the Wadjuk Noongar people who are the traditional custodians of this land.

Acknowledgments

- The State Government of Western Australia and WAMSI partners for funding this research.
- Professor David Antoine, Nick Hardman-Mountford, Jim Greenwood, Nagur Cherukuru, Helen Chedzey, Mark Broomhall, Passang Dorji, Edward King
- WAMSI Dredge Node, Themes 2/3 Predicting and measuring the characteristics of sediment plumes due to dredging operations

Overview

- Phase 1: Where did we start?
- Phase 2:
 - Remote Sensing
 - Development of TSS algorithm
 - Comparison of TSS algorithms
 - Spatial and temporal analysis (Jim)
 - Light at Depth

Review Process

DPaW-defined assets

Define condition/pressure metrics

Consider applicability of remote sensing. Data sources, spatial and temporal resolution, accuracy, confidence etc. **Assets**

Finfish

Coral

Seagrass

Invertebrates

Intertidal

Mangroves

Turtles

Cetaceans

Water Quality

Coastal

Biological

Wilderness

Example of feedback for coral asset

Condition Metrics (followed through time)	RS possibility Y/N
C: Benthic cover	Υ
C: Spp. Composition	N (general classification possible)
C: Diversity	N (depends on number of classes)
C: Size Frequency	N (depends on size)
C: Recruitment	N
Pressure Metrics (followed through time)	RS possibility Y/N
P: Temp (air and water)	Υ
P: Cyclones	Y
,	Y Y (estimates, surrogates possible)
P: Cyclones	Y Y (estimates, surrogates possible) Y (via surrogates)
P: Cyclones P: Sedimentation	
P: Cyclones P: Sedimentation Light Availability (Turbidity)	Y (via surrogates)

After analysis and review...

After analysis and review... Turbidity (light)

Goal: Quantify the reliability of remotely sensed turbidity products for use in the Kimberley region

Objective 1: Analyse uncertainties of remotely sensed turbidity products by comparison of different algorithms and different resolution products with each other and with archived *in situ* data

Objective 2: Analyse time series of remotely sensed turbidity data to provide first-stage pilot products that may be applicable for future use as marine management tools.

Deliverables

- Analysis of ensemble variability between different algorithms
- Assessment of sub-km scale variability from comparison with high-resolution products
- Quantification of uncertainty from comparison with archived in situ data
- Maps of turbidity "hotspot" regions (i.e. regions of frequently occurring high turbidity events and regions of extreme variability).
- Alternative: Maps of different turbidity regimes (e.g. permanently high turbidity, frequent turbid events, infrequent turbid events, persistently clear water).
- Turbidity indicator products (e.g. days above a set turbidity threshold)

Remote Sensing:

A satellite-borne sensor measures radiance.

We convert radiance to surface reflectance.

A true colour Landsat image is shown at left.

Landsat 8 TSS

30 m True colour image

TSS using the 2-band SWIR AOD with coefficients from Onslow Dredge

Develop an algorithm...

Article

A Semi-Analytic Model for Estimating Total Suspended Sediment Concentration in Turbid Coastal Waters of Northern Western Australia Using MODIS-Aqua 250 m Data

Passang Dorji *, Peter Fearns and Mark Broomhall

Remote Sensing and Satellite Research Group, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; P.Fearns@curtin.edu.au (P.F.); m.broomhall@bom.gov.au (M.B.)

* Correspondence: dorji.passang@postgrad.curtin.edu.au; Tel.: +61-8-9266-5267

Academic Editors: Xiaofeng Li and Prasad S. Thenkabail

Received: 6 April 2016; Accepted: 24 June 2016; Published: 30 June 2016

 Compared atmospheric correction using the DALEC. Default versus MUMM algorithms.
 MUMM is best. DALEC is very useful for algorithm development and R validation.

Compared exponential, linear and exponential, linear and exponential

2.20

1.03

30.93

53.64

38.39

195.55

linear

exponential

Compare all algorithms...

remote sensing

Article

A Quantitative Comparison of Total Suspended Sediment Algorithms: A Case Study of the Last Decade for MODIS and Landsat-Based Sensors

Passang Dorji * and Peter Fearns

Remote Sensing and Satellite Research Group, Curtin University, GPO Box U1987, Perth 6845, Australia; P.Fearns@curtin.edu.au

* Correspondence: dorji.passang@postgrad.curtin.edu.au; Tel.: +61-8-9266-5267

Academic Editors: Richard Gloaguen and Prasad S. Thenkabail

Received: 2 June 2016; Accepted: 24 September 2016; Published: 30 September 2016

- If we take an algorithm from the literature, how well can we expect it to perform?
- 5 different TSS types and a range of different Chl and CDOM conditions, how do the various TSS algorithms compare.
- Hydrolight modelling
- MODIS and Landsat
- 49/27 different algorithms
- Empirical and (semi)analytical

Landsat TSS algorithm comparisons

Impact of the Spatial Resolution of Satellite Remote Sensing Sensors in the Quantification of Total Suspended Sediment Concentration: A Case Study in Turbid Waters of Northern Western Australia.

Passang Dorji and Peter Fearns (submitted)

Time Series Analysis

Light At Depth (LAD)

Sub-surface
Photosyntetically
Active Radiation
(PAR) irradiance
from the Hydrorad

Modelled irradiance at 5 m depth for various TSS levels (mg L-1)

Spectral light profiles

Sub-surface hyperspectral irradiance from the Hydrorad for low value of TSS

Spectral light profiles

Sub-surface hyperspectral irradiance from the Hydrorad for high value of TSS

TSS to Attenuation (K_{d490})

- TSS and K_d relationships developed from fieldwork measurements taken near Onslow, June 2014
- K_{d490} and K_{dPAR} developed.
- Natural logarithmic relationship strong for "high" TSS concentrations but produces negative K at "low" TSS.
- Smith and Baker (1981), K_{d490} for clear ocean water = 0.0212 m⁻¹.

Linear relationship used for TSS < 3 mg/L

$$K_{d490} = 0.0765(TSS) + 0.0212$$

 Natural logarithmic relationship used for TSS > 3 mg/L

$$K_{d490} = 1.018 (In(TSS)) - 0.865$$

MTLs

- Broome 2002, MTL = 5.39 m
- Koolan Island 1984, MTL = 5.69 m
- Wyndham 2015, MTL = 4.57 m
- Other reference MTLs
 - ➤ Cape Lambert = 3.23 m
 - >Onslow = 1.60 m
 - Carnarvon = 1.08 m
 - ➤ Jurien Bay = 0.84 m
 - ➤ Barrack St, Perth = 0.85 m

Tides in Kimberley region

- Use a MTL of 5.5 m
- Tidal ranges: 1 m to 10 m
- Bathymetry levels: 1 m to 20 m
- Attenuation coefficients: low (0.05), medium
 - (0.15), high (0.40)
- Real Broome tide:
 - November 2002

Spring tides

Theoretical LAD determined using 4 different methods. Tidal range of 2 m and a low attenuation coefficient (k=0.05).

Neap tides

Hours of sun

 Broome Airport – approx. 10 hours of direct solar irradiance (not counting diffuse)

Bathymetry (m)

Tidal Range (m)

TSS (mg/L)

TSS time averaged between 1/2/10 – 28/2/10

LAD_{PAR} (%)

Percentage of light at depth time averaged between 1/2/10 – 28/2/10

LAD_{PAR} (%) @ 3 locations

	Lat/Lon	Bathy. (m)	Tidal Range (m)	TSS (mg/L)	High Tide LAD	Mid Tide LAD	Low Tide LAD
*	18.06° S, 121.94° E	18.0	8.4	0.80	8%	12%	17%
*	17.47° S, 121.89° E	19.5	7.6	0.25	19%	23%	28%
	16.44° S, 123.48° E	16.3	9.3	2.40	2%	4%	7%

Thank You. Questions?