

Appendix 1

Statements used by Boutilier and Thomson (2011) to measure different levels of SLO.

Appendix 2

Full SLO SEM results

Appendix 3

Results from regressing well-being responses on predicted class membership.

Appendix 4

Full survey.

Appendix 5

Data Codebook.

Appendix 6

Summary tables of all survey responses.

Appendices

Appendix 1

Statements used by Boutilier and Thomson (2011) to measure different levels of SLO for a specific company.

Statements measuring the level of "Economic legitimacy"

- EL1 Economic legitimacy 1 "We can gain from a relationship with the mine"
- EL2 Economic legitimacy 2 "We need to have the cooperation of the mine to reach our most important goals"

Statements measuring the level of "Interactional trust"

- IT1 Interactional trust 1 "The mine does what is says it will do in its relations with our organization"
- IT2 Interactional trust 2 "We are very satisfied with our relation with the mine"
- IT3 Interactional trust 3 "The presence of the mine is a benefit to us"
- IT4 Interactional trust 4 "The mine listens to us"

Statements measuring the level of "Socio-political legitimacy"

- SL1 Socio-political legitimacy 1 "In the long term the mine makes a contribution to the well-being of the whole region"
- SL2 Socio-political legitimacy 2 "The mine treats everyone fairly"
- SL3 Socio-political legitimacy 3 "The mine respects our way of doing things"
- SL4 Socio-political legitimacy 4 "Our organization and the mine have a similar vision for the future of this region"

Statements measuring the level of "Institutionalized trust"

- IT1 Institutionalized trust 1 "The mine gives more support to those who it negatively affects"
- IT2 Institutionalized trust 2 "The mine shares decision-making with us"
- IT3 Institutionalized trust 3 "The mine takes account of our interests"
- IT4 Institutionalized trust 4 "The mine is concerned about our interests"
- IT5 Institutionalized trust 5 "The mine openly share information that is relevant to us"

Appendix 2
Full SLO SEM results

		Coef.	Std.Err.	Z	P>z	[95%Conf.	Interval
q41_1						•	-
	L1	1			(constrai	ned)	
q41_2	Τ.4	0.505	0.057	4.4.000	0.000	0.454	0.005
~11 2	L1	0.785	0.056	14.080	0.000	0.676	0.895
q41_3	L2	1			(constrai	ned)	
q41_4	112	•			(Constrai	iica)	
L2 _		1.083	0.066	16.350	0.000	0.953	1.213
q41_5							
L1		1.936	0.143	13.540	0.000	1.656	2.216
q41_6 L2		1.424	0.086	16.640	0.000	1.257	1.592
q41_7		1.424	0.000	10.040	0.000	1.237	1.392
L1		2.124	0.189	11.210	0.000	1.753	2.495
q42_1							
L2		1.404	0.087	16.150	0.000	1.233	1.574
q42_2		4 500	0.400	45.550	0.000	4.500	4.004
L2		1.722	0.109	15.770	0.000	1.508	1.936
q42_3 L2		1.373	0.084	16.440	0.000	1.209	1.537
q42_4		1.575	0.004	10.440	0.000	1.20)	1.557
L2 _		1.355	0.083	16.400	0.000	1.193	1.517
q42_5							
L2		1.323	0.082	16.180	0.000	1.163	1.484
q42_6 L2		1.553	0.097	16.090	0.000	1.364	1.742
q42_7		1.333	0.097	10.090	0.000	1.304	1./42
L2		1.523	0.093	16.300	0.000	1.339	1.706
q42_8							
L2		1.223	0.075	16.400	0.000	1.077	1.370
L1							
	Q50 Yes	0.285	0.133	2.140	0.032	0.024	0.547
	q38_1	0.273	0.042	6.450	0.000	0.190	0.356
	inca	0.523	0.131	4.000	0.000	0.267	0.779
T 0	age	0.009	0.004	2.200	0.028	0.001	0.016
L2	05037	0.420	0.422	4.040	0.000	0.270	0.444
	Q50 Yes	-0.128	0.123	-1.040	0.299	-0.370	0.114
	q38_1	0.543	0.044	12.280	0.000	0.456	0.629
	inca	0.097	0.119	0.820	0.413	-0.136	0.330
-	age	-0.005	0.004	-1.460	0.145	-0.012	0.002

	Coef.	Std.Err.	[95%Conf.	Interval]
/q41_1				
cut1	-3.861	0.383	-4.612	-3.110
cut2	-1.602	0.315	-2.219	-0.985
cut3	1.572	0.309	0.966	2.177
cut4	5.747	0.373	5.016	6.477
	3./4/	0.575	3.010	0.4//
/q41_2	2.027	0.040	2.5.40	4.54.4
cut1	-2.027	0.262	-2.540	-1.514
cut2	0.545	0.245	0.065	1.025
cut3	3.195	0.267	2.672	3.718
cut4	5.826	0.327	5.185	6.468
/q41_3				
cut1	-1.672	0.296	-2.251	-1.093
cut2	0.802	0.286	0.241	1.363
cut3	4.349	0.318	3.725	4.972
cut4	7.354	0.398	6.574	8.135
	7.554	0.370	0.574	0.133
/q41_4	0.740	0.225	2.075	1.072
cut1	-2.619	0.335	-3.275	-1.962
cut2	-0.062	0.307	-0.665	0.540
cut3	4.765	0.350	4.079	5.451
cut4	7.674	0.429	6.833	8.515
/q41_5				
cut1	-4.658	0.660	-5.952	-3.364
cut2	-0.770	0.576	-1.899	0.359
cut3	3.906	0.612	2.706	5.105
cut4	9.889	0.797	8.327	11.450
	7.007	0.171	0.527	11.430
/q41_6	2.204	0.414	2.015	1 20 4
cut1	-2.204	0.414	-3.015	-1.394
cut2	1.162	0.401	0.376	1.947
cut3	5.466	0.443	4.598	6.335
cut4	9.559	0.553	8.475	10.643
/q41_7				
cut1	-4.382	0.709	-5.772	-2.993
cut2	-0.216	0.629	-1.449	1.017
cut3	4.857	0.693	3.499	6.216
cut4	10.602	0.904	8.830	12.374
	10.002	0.704	0.030	12.374
/q42_1	2 201	0.420	4.040	2.260
cut1	-3.201	0.429	-4.042	-2.360
cut2	0.355	0.393	-0.416	1.126
cut3	5.754	0.448	4.877	6.632
cut4	9.439	0.549	8.362	10.516
/q42_2				
cut1	-3.339	0.511	-4.341	-2.337
cut2	0.298	0.479	-0.642	1.238
cut3	5.772	0.530	4.734	6.810
cut4	10.932	0.673	9.612	12.251
/q42_3	10.732	0.073	7.012	14.4.1
	2.020	0.44 E	2 7 4 2	2 117
cut1	-2.929	0.415	-3.742	-2.117
cut2	0.622	0.385	-0.133	1.377
cut3	4.972	0.421	4.147	5.797
cut4	8.907	0.517	7.894	9.919
/q42_4				
cut1	-2.598	0.402	-3.387	-1.810
cut2	0.733	0.381	-0.013	1.479
cut3	5.154	0.421	4.330	5.979
cut4	9.605	0.550	8.527	10.683
	9.003	0.550	0.34/	10.003
/q42_5	2 400	o 40 5	2.004	2.200
cut1	-3.188	0.407	-3.986	-2.390
cut2	0.135	0.372	-0.594	0.864

cut3	3.887	0.393	3.117	4.658
cut4	8.565	0.501	7.584	9.547
/q42_6				
cut1	-3.142	0.465	-4.053	-2.231
cut2	0.559	0.434	-0.292	1.409
cut3	4.874	0.466	3.961	5.787
cut4	9.641	0.580	8.505	10.776
/q42_7				
cut1	-2.947	0.452	-3.834	-2.061
cut2	0.862	0.426	0.027	1.697
cut3	4.981	0.459	4.083	5.880
cut4	9.540	0.568	8.428	10.653
/q42_8				
cut1	-2.750	0.372	-3.479	-2.021
cut2	0.304	0.345	-0.373	0.980
cut3	4.361	0.372	3.631	5.091
cut4	8.130	0.463	7.223	9.037
var(e.L1)	4.428	0.474	3.590	5.462
var(e.L2)	4.084	0.393	3.382	4.933
cov(e.L1,e.L2)	3.159	0.258	2.653	3.666

Results from regressing well-being responses on predicted class membership. See Codebook for variable definitions

Appendix 3

Source	SS	df	MS		er of obs 1261)	=	1,264 5.29
Model	7.6881759	2	3.84408795		1201) > F	=	0.0052
Residual	917.057868	1,261	.727246525		uared	=	0.0083
Total	924.746044	1,263	.732182141	_	R-squared MSE	=	0.0067 .85279
q9_1	Coef.	Std. Err.	t 	P> t	[95% Con	 f.	Interval]
class2	1262807	.086759	-1.46	0.146	2964886		.0439272
class3	2586171	.0821878	-3.15	0.002	4198569		0973772
_cons	4.322294	.0544569	79.37 	0.000	4.215457		4.42913
Source	SS	df	MS		er of obs 1261)	=	1,264 7.97
Model	7.45597978	2	3.72798989		> F	=	0.0004
Residual	589.923767	1,261	.467822178	R-sq	uared	=	0.0125
+				_	R-squared	=	0.0109
Total	597.379747	1,263	.472984756	Root	MSE	=	.68398
q9_2	Coef.	Std. Err.	 t	P> t	[95% Con	 f.	Interval]
q9_2 + class2		Std. Err	t -1.78	P> t 0.076	[95% Con 		Interval]
+	1237466		 -1.78 -3.86	0.076 0.000			
+ class2	1237466	.0695848	 -1.78	0.076	2602613		.012768
class2 class3	1237466 2545177	.0695848	 -1.78 -3.86	0.076 0.000	2602613 3838396		.012768
class2 class3	1237466 2545177	.0695848	 -1.78 -3.86	0.076 0.000 0.000 Numb	2602613 3838396 4.509065		.012768 1251959 4.68044
class2 class3 _ cons	1237466 2545177 4.594752	.0695848 .0659184 .043677	-1.78 -3.86 105.20	0.076 0.000 0.000 Numb F(2,	2602613 3838396 4.509065 	 = =	.0127681251959 4.68044 1,264 3.65
class2 class3 cons Source	1237466 2545177 4.594752 	.0695848 .0659184 .043677	-1.78 -3.86 105.20 	0.076 0.000 0.000 Numb F(2,	2602613 3838396 4.509065 	 = = =	.0127681251959 4.68044 1,264 3.65 0.0262
class2 class3 _ cons	1237466 2545177 4.594752	.0695848 .0659184 .043677	-1.78 -3.86 105.20	0.076 0.000 0.000 	2602613 3838396 4.509065 	 = =	.0127681251959 4.68044 1,264 3.65
class2 class3 cons Source Model Residual	1237466 2545177 4.594752 	.0695848 .0659184 .043677	-1.78 -3.86 105.20 	0.076 0.000 0.000 Numb F(2, Prob R-sq Adj	2602613 3838396 4.509065 	 = = = =	.0127681251959 4.68044 1,264 3.65 0.0262 0.0058
class2 class3 cons Source Model Residual	1237466 2545177 4.594752 	.0695848 .0659184 .043677	-1.78 -3.86 105.20 	0.076 0.000 0.000 Numb F(2, Prob R-sq Adj	2602613 3838396 4.509065 	 = = = = =	.0127681251959 4.68044 1,264 3.65 0.0262 0.0058 0.0042
class2 class3 cons Source Model Residual	1237466 2545177 4.594752 	.0695848 .0659184 .043677	-1.78 -3.86 105.20 	0.076 0.000 0.000 Numb F(2, Prob R-sq Adj	2602613 3838396 4.509065 	= = = = = = = = = = = = = = = = = = = =	.0127681251959 4.68044 1,264 3.65 0.0262 0.0058 0.0042
Class2 class3 cons Source Model Residual Total	1237466 2545177 4.594752 	.0695848 .0659184 .043677 	-1.78 -3.86 105.20 	0.076 0.000 0.000 Numb F(2, Prob R-sq Adj Root	2602613 3838396 4.509065 	 = = = = = = f.	.0127681251959 4.68044 1,264 3.65 0.0262 0.0058 0.0042 .74033
Class2 class3 cons Source Model Residual Total	1237466 2545177 4.594752 	.0695848 .0659184 .043677 .043677 .043677 .043677 .043677 .043677 .043677 .043677	-1.78 -3.86 105.20 	0.076 0.000 0.000 	2602613 3838396 4.509065 	= = = = = = = f.	.0127681251959 4.68044 1,264 3.65 0.0262 0.0058 0.0042 .74033
Class2 class3 cons Source Model Residual Total	1237466 2545177 4.594752 	.0695848 .0659184 .043677 	-1.78 -3.86 105.20 MS	0.076 0.000 0.000 0.000 Numb F(2, Prob R-sq Adj Root	2602613 3838396 4.509065 	 = = = = = = f.	.0127681251959 4.68044 1,264 3.65 0.0262 0.0058 0.0042 .74033 Interval]

Source	SS	df	MS			= 1,264
Model Residual	1596.9433	1,261	11.2969418	8 Prob > F = = = = = = = = = = = = = = = = = =		= 8.92 = 0.0001 = 0.0140 = 0.0124
Total						= 1.1253
q9_4	Coef.	Std. Err.	t		[95% Conf	. Interval]
class2		.1144882	1.23	0.219	0838223	.3653946
class3		.108456	-2.23	0.026	4548372	0292891
_cons	3.057462	.0/1862	42.55 		2.916479	3.198444
Source	SS	df	MS			= 1,264
+ Model	4.73992125		2 36996063	- $F(2,$		= 2.77 = 0.0632
Residual		1,261	.856448531	1 R-sa	> F uared	= 0.0632 = 0.0044
+				- Adj 1	R-squared	= 0.0028
Total	1084.72152	1,263	.858845225	5 Root	MSE	= .92545
q9_5	Coef.	Std. Err.		P> t	[95% Conf	. Interval]
class2	0273395		-0.29	0.772	2120491	.1573701
class3	1737739			0.052		.0012035
_cons	3.930671	.0590966	66.51 	0.000	3.814732 	4.046609
Source	SS	df	MS			= 1,264 = 4.54
Model			4.93501776	6 Prob	> F	= 0.0108
Residual	1370.31984	1,261	1.08669297	7 R-sq		= 0.0072
Total	1380.18987	1,263	1.09278691		1	= 0.0056 = 1.0424
d9 ⁻ 6	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
class2	0971877	.106054	-0.92	0.360	3052495	.110874
	0971877 2777212					.110874 0806219
_cons	3.390033	.066568	50.93 	0.000	3.259437 	3.52063
Source	SS	df	MS	Numbe	er of obs	= 1,264
+	9.35024683 695.194057		4 67510041	- F(2,	1261)	= 8.48
Residual L	695.194057	1.261	.551303772	2 R-san	ıared	= 0.0002 $=$ 0.0133
+				- Adj 1	R-squared	= 0.0117
Total	704.544304	1,263	.55783397	7 Root	MSE	7425
q9_7		Std. Err.	t	P> t	[95% Conf	. Interval]
+		Std. Err.	t 1.45			
class2 class3	Coef.	Std. Err. .0755386 .0715586	1.45 -1.95	0.148 0.052	0388547	

Source	SS	df	MS	F(2, 1261) 4181 Prob > F 4671 R-squared		, -
Model Residual	3.40848363 502.41351		1.7042418 .39842467			0.0141 0.0067
+ Total	505.821994	1,263	.40049247			0.0052
d9_8	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons	1115652	.0642165 .060833 .0403074	-1.83	0.612 0.067 0.000	0933905 2309103 4.454557	.1585755 .0077799 4.612711
Source	SS	df	MS		er of obs = 1261) =	•
Model Residual	1.44892734 990.556611		.72446367 .78553260	2 Prob 2 R-sq	> F =	0.3979 0.0015
Total	992.005538	1,263	.78543589		MSE =	.8863
q9_9	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
class2 class3 _cons	0662635	.0901687 .0854178 .0565971		0.177 0.438 0.000	2986083 2338402 4.180002	.055186 .1013131 4.402071
Source	SS	df	MS			1,264
+	2.63860702			- F(2, 1 Prob 6 R-sq	1261) = > F = uared =	3.63 0.0267 0.0057
+ Model	2.63860702 457.822627	2 1,261	1.3193035	- F(2, 1 Prob 6 R-sq - Adj 1	1261) = > F = uared = R-squared =	3.63 0.0267 0.0057
Model Residual	2.63860702 457.822627 460.461234	1,261 1,263	1.3193035 .36306314	- F(2, 1 Prob 6 R-squ - Adj 1 3 Root	1261) =	3.63 0.0267 0.0057 0.0042 .60255
Model Residual Total	2.63860702 457.822627 	1,261 1,263	1.3193035 .36306314 .36457738	- F(2, 1 Prob 6 R-sq - Adj 1 3 Root P> t 0.553 0.018	1261) = > F = uared = R-squared = MSE = [95% Conf. 1566535 2515633	3.63 0.0267 0.0057 0.0042 .60255
Model Residual Total q9_10 class2 class3 _cons	2.63860702 457.822627 460.461234 	2 1,261 1,263 	1.3193035 .36306314 .36457738 	F(2, 1 Prob 6 R-sq - Adj 1 3 Root P> t 0.553 0.018 0.000	1261) =	3.63 0.0267 0.0057 0.0042 .60255 Interval] .0838713 0237114 4.758881
Model Residual Total q9_10 class2 class3 _cons Source	2.63860702 457.822627 460.461234 	2 1,261 1,263 	1.3193035 .36306314 .36457738 .36457738 	F(2, 1 Prob 6 R-sqn - Adj 1 3 Root P> t 0.553 0.018 0.000 Number F(2, 5 Prob 8 R-sqn	1261) = > F	3.63 0.0267 0.0057 0.0042 .60255 Interval] .0838713 0237114 4.758881
Model Residual Total q9_10 class2 class3 _cons Source Model Residual	2.63860702 457.822627 460.461234 	2 1,261 1,263 Std. Err. .0613006 .0580708 .0384772	1.3193035 .36306314 .36457738 	F(2, 1 Prob 6 R-sqn - Adj] 3 Root P> t 0.553 0.018 0.000 Number F(2, 5 Prob 8 R-sqn - Adj]	1261) = > F	3.63 0.0267 0.0057 0.0042 .60255
Model Residual Total q9_10 class2 class3 _cons Source Model Residual Total	2.63860702 457.822627 460.461234 	2 1,261 1,263 Std. Err0613006 .0580708 .0384772 df 1,263 Std. Err.	1.3193035 .36306314 .36457738 .36457738 	F(2, 1 Prob 6 R-sqn - Adj 1 3 Root P> t 0.553 0.018 0.000 Number F(2, 5 Prob 8 R-sqn - Adj 1 9 Root P> t	1261) = > F	3.63 0.0267 0.0057 0.0042 .60255
Model Residual Total q9_10 class2 class3 _cons Source Model Residual Total	2.63860702 457.822627 460.461234 	2 1,261 1,263 Std. Err. .0613006 .0580708 .0384772 df	1.3193035 .36306314 .36457738 .36457738 	F(2, 1 Prob 6 R-sq - Adj] 3 Root P> t 0.553 0.018 0.000 Number F(2, 5 Prob 8 R-sq - Adj] 9 Root P> t	1261) = > F	3.63 0.0267 0.0057 0.0042 .60255 Interval] .0838713 0237114 4.758881

Model 6.00749472	Source	SS	df	MS	F(2, 1261) = 4736 Prob > F = 4736 R-squared =		, -
Total 756.081487							0.0065 0.0079
Class2 .0343389	Total	756.081487	1,263	.59863934			
Class3 1975207 .0743294 -2.66 0.008 3433437 0516977 .008 4.426585 .04925 89.88 0.000 4.329964 4.523207 .0082 .00	q12_1	Coef.	Std. Err.	t t	P> t	[95% Conf.	Interval]
Model 5.19500885 2 2.59750443 Prob > F 0.0020	class3	1975207	.0743294	-2.66	0.008	3433437	0516977
Model 5.19500885 2 2.59750443	Source	SS	df	MS			
Q12_2 Coef. Std. Err. t P> t [95% Conf. Interval] Class2 .0202559					3 Prob 6 R-sq	> F = uared =	0.0020 0.0098
Class2 .0202559	Total	529.844937	1,263	.41951301	4 Root	MSE =	.64503
Class3 1520726	q12_2	Coef.	Std. Err.	t t	P> t	[95% Conf.	Interval]
Model 3.8567768	class3	1520726	.0621647	-2.45	0.015	2740302	0301151
Model 3.8567768 2 1.9283884 Prob > F = 0.0156 Residual 582.15509 1,261 .461661451 R-squared = 0.0066							
Total 586.011867	Source	SS	df	MS			
Class2 .0716793	Model	3.8567768		1.928388	- F(2, 4 Prob 1 R-sq	1261) = > F = uared =	4.18 0.0156 0.0066
Class3 0882702	Model Residual	3.8567768 582.15509	2 1,261	1.928388 .46166145	- F(2, 4 Prob 1 R-sq - Adj	1261) = > F = uared = R-squared =	4.18 0.0156 0.0066 0.0050
Model 22.771287	Model Residual Total	3.8567768 582.15509 586.011867	1,261 1,263	1.928388 .46166145 	- F(2, 4 Prob 1 R-sq - Adj 1 9 Root	1261) = > F = uared = R-squared = MSE =	4.18 0.0156 0.0066 0.0050 .67946
Model 22.771287	Model Residual Total q12_3 class2 class3	3.8567768 582.15509 586.011867 Coef. .0716793 0882702	2 1,261 1,263 Std. Err. .0691251 .0654829	1.928388 .46166145 .46398405 t .1.04 -1.35	- F(2, 4 Prob 1 R-sq - Adj; 9 Root P> t 0.300 0.178	1261) = > F = uared = R-squared = MSE = [95% Conf. 0639335 2167377	4.18 0.0156 0.0066 0.0050 .67946 Interval] .2072921 .0401973
Residual 1812.72159	Model Residual Total q12_3 class2 class3 _cons	3.8567768 582.15509 586.011867 Coef. .0716793 0882702 4.445473	2 1,261 1,263 	1.928388 .46166145 .46398405 .46398405	- F(2, 4 Prob 1 R-sq - Adj 1 9 Root P> t 0.300 0.178 0.000	1261) = > F = uared = R-squared = MSE = [95% Conf06393352167377 4 .360351	4.18 0.0156 0.0066 0.0050 .67946 Interval] .2072921 .0401973 4.530594
Total 1835.49288	Model Residual Total q12_3 class2 class3 _cons	3.8567768 582.15509 586.011867 Coef. .0716793 0882702 4.445473	2 1,261 1,263 	1.928388 .46166145 .46398405 	- F(2, 4 Prob 1 R-sq - Adj; 9 Root P> t 0.300 0.178 0.000 Number F(2,	1261) = > F = uared = R-squared = MSE = [95% Conf	4.18 0.0156 0.0066 0.0050 .67946 Interval] .2072921 .0401973 4.530594
	Model Residual Total q12_3 class2 class3 cons Source Model	3.8567768 582.15509 586.011867 ————————————————————————————————————	2 1,261 1,263 	1.928388 .46166145 .46398405 .46398405 .1.04 .1.35 .102.46 	- F(2, 4 Prob 1 R-sq - Adj 1 9 Root 0.300 0.178 0.000 Number F(2, 5 Prob 4 R-sq	1261) =	4.18 0.0156 0.0066 0.0050 .67946
·	Model Residual Total q12_3 class2 class3 _cons Source Model Residual	3.8567768 582.15509 586.011867 Coef. .0716793 0882702 4.445473 SS 22.771287 1812.72159	2 1,261 1,263 Std. Err. .0691251 .0654829 .0433884	1.928388 .46166145 .46398405 .46398405 .1.35 .1.35 .102.46 	- F(2, 4 Prob 1 R-sq - Adj 1 9 Root 0.300 0.178 0.000 Numb - F(2, 5 Prob 4 R-sq - Adj 1	1261) = > F = uared = R-squared = MSE = [95% Conf 0639335 2167377	4.18 0.0156 0.0066 0.0050 .67946
	Model Residual Total q12_3 class2 class3 _cons Source Model Residual Total	3.8567768 582.15509 586.011867 Coef. .0716793 0882702 4.445473 SS 22.771287 1812.72159 1835.49288	2 1,261 1,263 Std. Err. .0691251 .0654829 .0433884 df	1.928388 .46166145 .46398405 .46398405 .1.04 .1.35 .102.46 	- F(2, 4 Prob 1 R-sq - Adj 9 Root P> t 0.300 0.178 0.000 Number F(2, 5 Prob 4 R-sq - Adj 9 Root	1261) =	4.18 0.0156 0.0066 0.0050 .67946

Source	SS	df	MS			1,264 3.93
Model Residual		2 1,261	2.7257392			0.0200 0.0062 0.0046
Total	880.860759	1,263	.69743528			.8332
q12_5	Coef.	Std. Err.	t t	P> t	[95% Conf.	Interval]
class2 class3 _cons	1958013	.084766 .0802998 .0532059	-0.57 -2.44 80.49	0.572 0.015 0.000	2142728 3533372 4.178383	.1183231 0382654 4.387147
Source	SS	df	MS		er of obs =	•
Model Residual	5.87229392 581.462358		2.9361469 .461112	6 Prob 1 R-squ	1261) = > F = aared = R-squared =	
Total	587.334652	1,263	.46503139			.67905
q12_6	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
class2 class3 _cons	1625502	.0690839 .065444 .0433626	-2.48	0.769 0.013 0.000	1152647 2909412 4.432941	.1557994 0341591 4.603082
Source	SS	df 	MS		er of obs = 1261) =	1,264 8.51
Model Residual			2.7341450 .32119379	8 Prob 9 R-squ	> F = ared =	0.0002 0.0133
Total	410.493671	1,263	.32501478		R-squared = MSE =	0.0118
q12_7	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons	1389398	.0576577 .0546198 .0361906	0.77 -2.54 128.12	0.441 0.011 0.000	0686905 2460954 4.565565	.1575407 0317841 4.707566
Source	SS	df	MS		er of obs =	
Model Residual	5.30758984 838.9076			2 Prob 9 R-squ		3.99 0.0188 0.0063 0.0047
+ Total	844.21519	1,263	.66842057			0.0047
q12_8	Coef.	Std. Err.	 t	P> t	[95% Conf.	Interval]
class3	1563127 2220173 4.513964	.0786078	-2.82	0.005		

Source	SS	df	MS		er of obs = 1261) =	1,264 7.58
Model Residual	4.73916642 394.006878	2 1,261	2.36958321	8321 Prob > F = 5589 R-squared =		0.0005 0.0119
Total	398.746044	1,263	.315713416			0.0103
q12_9	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons	1659892	.056868 .0538717 .0356949	-0.24 -3.08 132.37	0.814 0.002 0.000	1249721 2716772 4.655046	.0981606 0603011 4.795102
Source	SS	df	MS		er of obs = 1261) =	•
Model Residual			4.30186459	Prob R-squ	> F =	
Total	496.60443	1,263	.393194323		MSE =	.62209
q12_10	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons	1915887	.0632887 .0599541 .0397251	0.51 -3.20 115.26	0.613 0.001 0.000	0921592 3092095 4.500809	.1561664 0739679 4.656678
Source	SS	df	MS		er of obs = 1261) =	1,264 2.99
Model Residual			2.92510055	Prob R-squ	> F = ared =	0.0506 0.0047
Total	1238.94225	1,263	.980951898		R-squared = MSE =	0.0031
q12_11	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons	1824656	.1006037 .095303 .0631469	-0.11 -1.91 63.62	0.909 0.056 0.000	2089201 3694355 3.893383	.185818 .0045043 4.141152
Source	SS	df	MS			1,264
	6.51613833 1430.04003		3.25806917 1.13405237	7 Prob 7 R-squ	ared =	
	1436.55617	1,263	1.13741581			0.0030 1.0649
q12_12	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class3	.0377185 1596836 3.735928	.1083404	0.35	0.728 0.120		.2502657 .0416647 3.869339

Source	SS	df	MS	717 R-squared =		, -
Model Residual	8.37760855 1378.86211		4.1888042 1.0934671			0.0219 0.0060
+ Total	1387.23972	1,263	1.0983687		R-squared = MSE =	0.0045 1.0457
q15_1	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons	1614347	.1063841 .1007788 .0667752		0.519 0.109 0.000	1401538 3591473 3.493707	.2772647 .0362779 3.755712
Source	SS	df	MS		er of obs = 1261) =	1,264 4.97
Model Residual	7.10188005 900.694797		3.5509400 .71427025	2 Prob 9 R-sq	> F = uared = R-squared =	0.0071
Total	907.796677	1,263	.71876221			.84515
q15_2	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons	1337145	.0859815 .0814512 .0539689		0.345 0.101 0.000	0873842 2935093 4.000019	.2499809 .0260804 4.211776
Source	SS	df	MS		er of obs = 1261) =	1,264 8.35
Model Residual	8.49726631 641.552575		4.2486331 .50876492	5 Prob 9 R-sq	> F = uared =	0.0002 0.0131
Total	650.049842	1,263	.51468712		R-squared = MSE =	0.0115
q15_3	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 cons		.0725659 .0687424 .0455481	1.08 -2.26 95.03		0640497 2899684 4.239037	.2206765 0202441 4.417754
+				- F(2,	er of obs = 1261) =	3.87
	8.8934742 1447.33991			4 R-sq	uared =	0.0210
Total	1456.23339	1,263	1.1529955		R-squared = MSE =	0.0045 1.0713
q15_4	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons	.1534378 0909271 3.420084	.1089937	1.41	0.159	0603912 2934897 3.285868	.3672668 .1116355 3.5543

Source	SS	df	MS	F(2, 1261) = 8429 Prob > F = 8663 R-squared =		1,264 0.49
Model Residual			.602258429 1.23853663			0.6150 0.0008
Total	1562.99921	1,263	1.2375290			-0.0008 1.1129
q15_5	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons	0514687	.1132213 .1072558 .0710668	0.33 -0.48 44.02	0.740 0.631 0.000	1844728 2618881 2.988734	.259773 .1589508 3.267579
Source	SS	df	MS		er of obs = 1261) =	1,264 8.90
Model Residual	16.4823819 1167.26129		8.2411909	4 Prob 5 R-squ	> F =	0.0001
Total	1183.74367	1,263	.937247562			.96211
q15_6	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons	158288	.0978814 .0927241 .0614382		0.075 0.088 0.000	0177308 3401986 3.852641	.3663259 .0236226 4.093706
Source	SS	df	MS		er of obs = 1261) =	1,264 9.36
Model Residual		2 1,261	6.135293 .65540771	2 Prob 7 R-squ	> F = lared = R-squared =	0.0001 0.0146
Total	838.739715	1,263	.66408528			.80957
q15_7	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons		.0823625 .0780229 .0516973	2.14 -1.42 81.21	0.032 0.156 0.000	.0147876 2638723 4.096789	.3379528 .0422657 4.299634
Source	SS	df	MS		er of obs =	
	5.4083638 611.426288	1,261	.48487413	9 Prob 8 R-squ	uared =	0.0039 0.0088
Total	616.834652	1,263			R-squared = MSE =	0.0072
q15_8	Coef.	Std. Err.	 t	P> t	[95% Conf.	Interval]
class2 class3 _cons	.1498483	.0708416	2.12	0.035	.0108679	.2888286

1,264 4.19		per of obs		MS	df	SS	Source
	=	•				11 5000145	
0.0154	=) > F		5.75115725		11.5023145	Model
0.0066	=	quared	_	1.3739454	1,261	1732.54515	Residual
0.0050 1.1722	=	R-squared MSE		1.38087686	1,263	1744.04747	Total
Interval]	 onf.	[95% Cd	P> t	t	Std. Err.	Coef.	q15_9
.4316272		036273	0.098	1.66	.11925		class2
.1432704		29997	0.488	-0.69	.1129669		class3
2.990459	67 	2.69676	0.000	37.99 	.0748509	2.843613	_cons
1,264		per of obs		MS	df	SS	Source
6.59 0.0014	_) > F		5.03149209	2	10.0629842	Model
0.0103	=	quared					Residual
0.0103		R-squared	_				
.87369	=	MSE		.770094811	1,263	972.629747	Total
Interval]	 onf.	[95% Cd	P> t	t	Std. Err.	Coef.	q15_10
.3219131	47	02684	0.097	1.66	.0888856	.147533	class2
.0525454		277838		-1.34	.0842024		class3
4.195371		3.97646	0.000	73.24	.0557918	4.085917	cons
1,264	=	er of obs		MS	df	SS	Source
10.16	=	1261)					+
0.0000	=	> F		5.64630688		11.2926138	Model
0.0159	=	quared		.555846613	1,261	700.922576	Residual
0.0143	=	R-squared					+
.74555	=	MSE	Root	.563907514	1,263	712.21519	Total
Interval]	 onf.	[95% Cd	P> t	t	Std. Err.	Coef.	q15_11
.3056571	79	.008047	0.039	2.07	.0758492	.1568525	class2
.0221937		259734	0.099	-1.65	.0718528		class3
4.470678		4.28387		91.94	.0476091		cons
		per of obs		MS	df	SS	Source
0.0000	=	1261) > F	Prob	7.4660233	2	14.9320467	Model
0.0200	=	quared	R-sa	.581597068			Residual
0.0184		R-squared					+
.76263	=	MSE		.592498772	1,263	748.325949	Total
Interval]	 onf.	[95% Cd	P> t	t	Std. Err.	Coef.	q15_12
		051504	0 000	2 - 63	.0775863	.2037485	class2
.3559608	61	. 051536	0.009				224202
.3559608					.0734983	1126492	class3
.3559608 .0315433 4.34592	17			-1.53 87.28	.0734983	1126492 4.250379	class3 cons

Source	SS	df	MS			1,264
Model Residual	4.85326832 1220.04467	2 1,261	2.42663416 .96752155	6 Prob 5 R-sq	uared =	0.0818
	1224.89794	1,263	.969832101	_	R-squared = MSE =	0.0024
q21_1	Coef.	Std. Err.	 t	P> t	[95% Conf.	Interval]
class2	.0015862	.10007	0.02	0.987	1947359	.1979083
class3						.027164
_cons	3.956798	.062812	62.99 	0.000	3.83357	4.080025
Source	SS	df	MS			1,264
Model	6.18190149	2	3.09095074	-	1261) = = = = = = = = = = = = = = = = = = =	5.56
Residual					uared =	
+					- 1 · · · · ·	0.0072
Total	706.860759	1,263	.55966806	b Root	MSE =	.74542
q21_2	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2	0638274	.075836	-0.84	0.400	2126061	.0849513
	2143325	.0718403	-2.98	0.003	3552722	0733927
_cons	4.375878	.0476008	91.93	0.000	4.282493	4.469264
Source	SS	df	MS			1,264 5.98
Model		2	2.75443228		> F = uared =	
Residual		1,261	.460379543	R-sq	uared =	0.0094
Total	586.047468	1,263	.464012247		R-squared = MSE =	0.0078
q21_3	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2	.0197811	.069029	0.29	0.774	1156433	.1552055
class3	1573367		-2.41			
_cons	4.427244	.0433281	102.18 	0.000	4.34224	4.512247
Source	SS	df	MS	Numb	er of obs =	1,264
Model	5.96585534	2	2.98292767	7 Prob	1261) = = = = = = = = = = = = = = = = = = =	0.0460
Residual	1218.96769	1,261	.966667477	7 R-sq	uared =	0.0049
+					R-squared =	0.0033
Total	1224.93354	1,263		8 Root	MSE =	.98319
q21_4	Coef.	Std. Err.			[95% Conf.	Interval]
	.0848521 1136092				1113833	.2810875
class3	1136092	.0947556	-1.20	0.231		.0722868
_cons	3.895452	.0627842	62.05 	U.U00 	3.772279	4.018625

Source	SS	df	MS		er of obs = 1261) =	, -
 Model Residual			5.1089140 1.3839306	5 Prob	> F = aared =	0.0252
+ Total	1755.35443		1.3898293	- Adj I	R-squared =	0.0042 1.1764
q21_5	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons		.1196826 .1133766 .0751224	1.27 -0.97 40.90	0.205 0.330 0.000	0831098 3329278 2.925419	.386488 .1119274 3.220177
Source	SS	df	MS		er of obs = 1261) =	•
Model Residual	12.7148035 679.797064		6.3574017 .53909362	3 Prob 7 R-squ	> F = lared = R-squared =	0.0000
Total	692.511867	1,263	.548307			.73423
q21_6	Coef.	Std. Err.	t t	P> t	[95% Conf.	Interval]
class2 class3 _cons	1281009	.0746975 .0707617 .0468861		0.028 0.070 0.000	.0177954 2669245 4.196098	.3108854 .0107228 4.380065
Source	SS	df	MS		er of obs = 1261) =	1,264 12.23
Model Residual	10.1620995 523.799135		5.0810497 .41538392	7 Prob 9 R-squ	> F = ared =	0.0000 0.0190
Total	533.961234	1,263	.42277215		R-squared = MSE =	0.0175
q21_7	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 cons			1.62 -2.45 109.42		0226774 2743273 4.422619	.2345953 03061 4.584104
+				- F(2,	er of obs = 1261) =	4.00
	4.9628174 782.466771			3 R-squ	uared =	0.0186
Total	787.429589	1,263	.6234596			0.0047
q21_8	Coef.	Std. Err.	 t	P> t	[95% Conf.	Interval]
class2 class3 _cons	.0124958 1535616 4.370853				1447265 3025001 4.272167	.1697182 0046231 4.469538

Source	SS	df	MS	Numbe - F(2,	r of obs = 1261) =	1,264 6.16
Model Residual		2 1,261	2.4094039	4 Prob 8 R-squ	> F =	0.0022 0.0097 0.0081
Total	498.341772	1,263	.394569893			.6256
q21_9	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons	1245592	.0636458 .0602924 .0399492		0.439 0.039 0.000	0755589 2428436 4.495341	.1741678 0062747 4.65209
Source	SS	df	MS		r of obs =	•
Model Residual			4.9666414	8 R-squ	> F =	3.99 0.0187 0.0063 0.0047
Total	1578.67009	1,263	1.2499367			1.1154
q21_10	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons	1945181	.1134727 .1074939 .0712245	0.44 -1.81 51.92	0.658 0.071 0.000	1724438 4054047 3.557916	.2727882 .0163685 3.837379
Source	SS 	df	MS		r of obs = 1261) =	•
Model Residual			5.3890943	6 Prob 3 R-squ	> F = ared =	0.0000
+ Total	560.958861	1,263	.4441479		-squared = MSE =	0.0177
q21_11	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons		.0671999 .0636592 .0421801	1.42 -2.65 105.94	0.157 0.008 0.000	0367238 29386 4.385636	.2269482 0440806 4.551138
Source	SS	df	MS		r of obs =	
Model Residual	1.6923403 2081.95877		.8461701 1.6510378	5 Prob 8 R-squ	ared =	0.5991 0.0008
+ Total	2083.65111	1,263	1.6497633			-0.0008 1.2849
q18_1	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	1322577 0790013 3.551529	.1238354		0.524		.124201 .1639449 3.712503

Source	SS	df	MS		er of obs = 1261) =	, -
Model Residual		2 1,261	.916743276	6 Prob 7 R-sq	> F = uared =	0.3386 0.0017
Total	1068.40427	1,263	.84592579		R-squared = MSE =	0.0001
q18_2	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons	0862696	.0935645 .0886347 .0587286	0.19 -0.97 70.72	0.849 0.331 0.000	1657181 2601573 4.037817	.2014003 .0876181 4.26825
Source	SS	df	MS		er of obs = 1261) =	1,264 4.45
Model Residual	4.01919597 569.499791		2.00959798 .451625528	B Prob B R-sq	> F = uared = R-squared =	0.0119
Total	573.518987	1,263	.45409262	7 Root	MSE =	.67203
q18_3	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
class2 class3 _cons	1357068	.0683696 .0647673 .0429142		0.827 0.036 0.000	1191714 2627703 4.406362	.1490899 0086433 4.574744
Source	SS	df	MS		er of obs = 1261) =	1,264 5.04
Model Residual			2.01197974	4 Prob 8 R-sq	> F = uared =	0.0066 0.0079
Total	507.797468	1,263	.402056586		R-squared = MSE =	
q18_4	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons	1314003	.0643034 .0609153 .040362			1048034 2509068 4.439578	.1475035 0118937 4.597946
Source	l SS	df	MS		er of obs =	
	12.0535688 1917.4401			2 Prob 6 R-sq	uared =	0.0192 0.0062
то+э1	+ 1929.49367	1,263	1.52770679			0.0047 1.2331
IOCAI						
	Coef.		t		[95% Conf.	Interval]

Source	SS +	df	MS		er of obs = 1261) =	,
Model Residual			2.627631 1.1304748	9 Prob 3 R-sq	> F = ared =	0.0983 0.0037
Total	+ 1430.78402	1,263	1.1328456		R-squared = MSE =	0.0021
q18_6	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2 class3 _cons	1452708	.1081693 .10247 .0678957	0.29 -1.42 58.54	0.772 0.157 0.000	1809153 3463013 3.841172	.2435081 .0557597 4.107574
Source	SS	df	MS		er of obs = 1261) =	1,264 1.78
Model Residual	4.6213947 1634.36595		2.3106973 1.2960871	5 Prob 9 R-sq	> F = uared = R-squared =	0.1686
Total	1638.98734	1,263	1.2976938			1.1385
q18_7	Coef.	Std. Err.	 t 	P> t	[95% Conf.	Interval]
class2 class3 _cons	2024236	.1158219 .1097194 .0726991	-0.91 -1.84 52.85	0.362 0.065 0.000	3328296 4176763 3.699627	.1216202 .0128291 3.984876
Source	SS +	df	MS		er of obs = 1261) =	1,264 12.95
Model Residual	11.4335796 556.487307		5.7167897 .44130634	8 Prob 9 R-sq	> F = aared =	0.0000 0.0201
Total	567.920886	1,263	.44966024		R-squared = MSE =	0.0186
q18_8	Coef.	Std. Err.	 t	P> t	[95% Conf.	Interval]
class2 class3 cons	1779159	.067584	-2.78	0.168 0.006	0393078 3035194	.2258711 0523125
	4.51278 	.0424211	106.38	0.000	4.429556 	4.596004
				Numbe	er of obs =	1,264
Source Model		df	MS 1.3439074	Numbe - F(2, 2 Prob 7 R-squ	er of obs = 1261) = > F = uared =	1,264 3.81 0.0223 0.0060
Source Model Residual	SS + 2.68781485	df 2 1,261	MS 1.3439074 .35230327	Numbe - F(2, 2 Prob 7 R-sq - Adj I	er of obs = 1261) = > F = uared = R-squared =	1,264 3.81 0.0223 0.0060 0.0044
Source Model Residual Total	SS + 2.68781485 444.254432	df 2 1,261 1,263 Std. Err.	MS 1.3439074 .35230327 .35387351	Number F(2, 2 Prob 7 R-squer Adj 1 3 Root	er of obs = 1261) = > F = 1261	1,264 3.81 0.0223 0.0060 0.0044 .59355
Source Model Residual Total q18_9 class2	SS +	df	MS 1.3439074 .35230327 .35387351	Number F(2, 2 Prob 7 R-squer Adj 1 3 Root P> t	er of obs = 1261) = > F = started = MSE = [95% Conf1525789]	1,264 3.81 0.0223 0.0060 0.0044 .59355 Interval]

Source	SS	df	MS		per of obs = 1261) =	-/
Model	2.87452801	2	1.437264		> F =	
Residual	615.086706	1,261	.487776928	R-sq	quared =	
+		1 060	40000045		R-squared =	0.0001
Total	617.961234	1,263	.48928047	/ Root	MSE =	69841
q18_10	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
class2	0541872	.0710533	-0.76	0.446	1935829	.0852085
class3		.0673096	-2.24	0.025	2826087	0185065
_cons	4.557161	.0445988	102.18	0.000	4.469665	4.644657
Source	SS	df	MS		er of obs =	-,
+	4 3620047		2 1010472		1261) =	
Model Residual		2 1 , 261	2.18104735) > F = quared =	
+					R-squared =	
Total	407.739715	1,263	.322834295		MSE =	.56559
q18_11	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
q18_11 + class2		Std. Err. 	t 	P> t 		Interval] .0910968
+	0217885				[95% Conf. 	
+ class2	0217885 1642957	.0575403	-0.38	0.705	1346737	.0910968
class2 class3	0217885 1642957	.0575403	-0.38 -3.01	0.705 0.003	1346737 2712332	.0910968
class2 class3	0217885 1642957 4.705269	.0575403	-0.38 -3.01	0.705 0.003 0.000	1346737 2712332 4.634414 	.0910968 0573583 4.776125
class2 class3 _cons	0217885 1642957 4.705269	.0575403 .0545086 .0361169	-0.38 -3.01 130.28	0.705 0.003 0.000 Numb	1346737 2712332 4.634414 	.0910968 0573583 4.776125
class2 class3 cons Source	0217885 1642957 4.705269 	.0575403 .0545086 .0361169	-0.38 -3.01 130.28 	0.705 0.003 0.000 Numb F(2,	1346737 2712332 4.634414 	.0910968 0573583 4.776125
class2 class3 _cons	0217885 1642957 4.705269 	.0575403 .0545086 .0361169	-0.38 -3.01 130.28	0.705 0.003 0.000 Numk F(2, Prok	1346737 2712332 4.634414 	.0910968 0573583 4.776125
class2 class3 cons Source	0217885 1642957 4.705269 	.0575403 .0545086 .0361169	-0.38 -3.01 130.28 	0.705 0.003 0.000 Numk F(2, 5 Prok 7 R-sq Adj	1346737 2712332 4.634414 	.0910968 0573583 4.776125 = 1,264 = 18.56 = 0.0000 = 0.0286 = 0.0271
class2 class3 cons Source Model Residual	0217885 1642957 4.705269 	.0575403 .0545086 .0361169 	-0.38 -3.01 130.28 	0.705 0.003 0.000 Numk F(2, 5 Prok 7 R-sq Adj	1346737 2712332 4.634414 	.0910968 0573583 4.776125
class2 class3 cons Source Model Residual	0217885 1642957 4.705269 	.0575403 .0545086 .0361169 	-0.38 -3.01 130.28 MS 6.47463255 .348858607	0.705 0.003 0.000 Numk F(2, 5 Prok 7 R-sq Adj Root	1346737 2712332 4.634414 eer of obs = 1261) = 1261) = 1261	.0910968 0573583 4.776125
class2 class3 cons Source Model Residual	0217885 1642957 4.705269 	.0575403 .0545086 .0361169 df 	-0.38 -3.01 130.28 MS 6.47463255 .348858607	0.705 0.003 0.000 Numk F(2, 5 Prok 7 R-sq Adj Root	1346737 2712332 4.634414 eer of obs = 1261) = 1261) = 1261	.0910968 0573583 4.776125
Class2 class3 cons Source Model Residual Total	0217885 1642957 4.705269 	.0575403 .0545086 .0361169 df	-0.38 -3.01 130.28 MS 6.47463255 .348858607	0.705 0.003 0.000 Numk F(2, 5 Prok 7 R-sq Adj Root	1346737 2712332 4.634414 	.09109680573583 4.776125 = 1,264 = 18.56 = 0.0000 = 0.0286 = 0.0271 = .59064
Class2 class3 cons	0217885 1642957 4.705269 	.0575403 .0545086 .0361169 .0361169 .0361169 .046	-0.38 -3.01 130.28 MS -6.47463255 .348858607	0.705 0.003 0.000 Numk F(2, 5 Prok 7 R-sq Adj Root P> t	1346737 2712332 4.634414 	.09109680573583 4.776125 = 1,264

Appendix 4 Full survey

A pdf copy of the online survey, including all choice sets.

Includes question numbers.

Formatting will differ slightly from that seen.

Q1. Dear Sir/Madam,

Project Title: Marine environmental values within Cockburn Sound (UWA Human Ethics Reference 2022/ET000541)

Name of Researchers: Michael Burton, Milena Kim, Abbie Rogers, Natasha Pauli, Mehran Nejati, Julian Clifton, Alaya Spencer-Cotton, from The University of Western Australia and Edith Cowan University.

About the Project: This survey aims to understand what marine environmental values within Cockburn Sound are important to the Perth community, and community perception of how the proposed Westport development might impact on those values, positively or negatively.

What does Participation Involve? Participation involves answering questions in an online survey, which will take about 15 minutes to complete.

Voluntary Participation and Withdrawal from the Study: Your participation is voluntary and you are free to withdraw (by closing your browser) at any time prior to pressing "submit" at the end of the online survey, without reason and without prejudice.

Your Privacy: Your responses will be confidential and will not be used individually. The data will be kept in a de-identified format, in a password protected computer or a secure server for a minimum of seven years at the University of Western Australia.

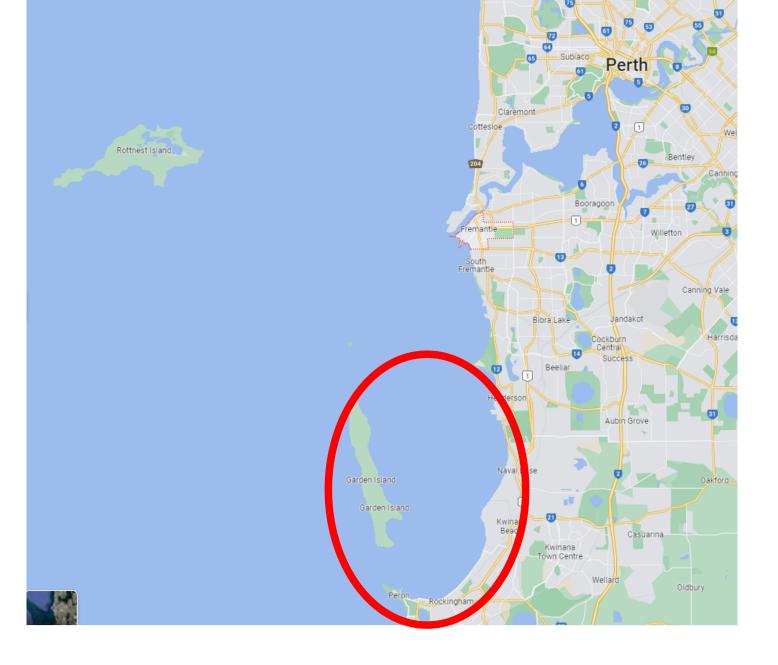
Possible Benefits: This project will provide information on preferences for the environmental assets within Cockburn Sound, which may be used to inform future decision making.

Possible Risks and Risk Management Plan: There are no foreseeable risks to participation. Remember that you are able to withdraw at any time (by closing your browser) prior to pressing "submit" at the end of the survey.

Reimbursement: You will be redirected to the PureProfile completion page to collect your reimbursement upon completion of the survey.

Contacts: If you have any questions about this survey, please feel free to contact Dr Michael Burton:

Michael.burton@uwa.edu.au or +61 8 6488 2531.


You can download a copy of the participant information sheet to keep for your records here.

Approval to conduct this research has been provided by the University of Western Australia, in accordance with its ethics review and approval procedures. Any person considering participation in this research project, or agreeing to participate, may raise any questions or issues with the researchers at any time. In addition, any person not satisfied with the response of researchers may raise ethics issues or concerns, and may make any complaints about this research project by contacting the Human Ethics office at UWA on (08) 6488 4703 or by emailing to humanethics@uwa.edu.au. All research participants are entitled to retain a copy of any Participant Information Form and/or Participant Consent Form relating to this research project.

Q2. **Consent Statement:** I have read the information provided. I agree to participate in this research project but understand withdrawal is not possible once data are submitted. I consent to participate in this research project.

Q3. What is your gender?
 Male Female Other/non-binary Prefer not to say
Q4. Which age group applies to you?
 Less than 18 years 18-29 years 30-39 years 40-49 years 50-59 years 60-69 years 70-79 years 80 years and over
Q5. Please state the postcode of your usual place of residence 6000
Q6. The maps below shows the area of Cockburn Sound, both in relation to Perth and Fremantle, and in more detail.
Please indicate how often you have visited the Cockburn Sound area in the last 5 years:

Woodman Point Jervoise Bay Beach Jervoise Bay Henderson Cliffs Naval Base Shacks Holiday Villiage Mount Brown Kwinana Shelf Challengers Beach **Alumina Refinery** Jetty (ALCOA) Garden Island Naval Base Horse Beach Cockburn Sound Kwinana Bulk Terminal Kwinana Horse Beach Kwinana **HMAS Stirling** BPOil Refinery Jetty Kwinana Bulk Jetty CBH Kwinana Grain Jetty Horse Beach Rockingham Dog Beach **Point Peron** Mangles Bay

	Every day
\circ	A few times a week
\circ	About once a week
\circ	About once a fortnight
\circ	About once a month
0	A few times a year
0	Less than once a year
0	I have not visited Cockburn Sound in the last 5 years
	Please indicate what sorts of activities you have undertaken in Cockburn Sound during any visits to this ion in the last 5 years. Select all relevant options.
	beach activities
	birdwatching
✓	camping/caravan
	community volunteering
	cycling
	dog beach activities
	free diving
	fishing
	horse exercising
	horseback riding
	hydrofoiling
	hoverboarding
	jet-skiing
	kayaking
	kite boarding
	kite surfing
	motor boating
	picnicking
	sailing
	school/community camps
	scuba diving
	swimming
	snorkelling
	SUP boarding
	visiting family and/or friends
	walking/running
	wakeboarding

water skiing	
windsurfing	
work	
other	

Q8. Your perceptions of the environment in Cockburn Sound

We will now discuss some of the marine animals or plants in Cockburn Sound, and ask about whether you personally value them, and why, through a series of statements.

Penguins

The Little Penguin (also known as fairy penguin, or blue penguin) is the smallest penguin species, and it occurs along the southern coast of Australia.

There are two penguin colonies using Cockburn Sound for feeding and nesting: one on Penguin Island, and one on Garden Island.

In the past, Penguin Island was the largest colony in Western Australia.

The estimated population that uses Cockburn Sound is in decline, with current estimates at 600.

Q9. Please select your level of agreement or disagreement with each statement listed on whether and how you personally value the **penguins of Cockburn Sound**.

	Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree
Penguins contribute to my enjoyment of the Cockburn Sound marine environment.		\circ	0	\circ	\circ
Penguins are an important part of the history and cultural heritage of the area.		\circ	0	\circ	\circ
Penguins are important for scientific research and education.		\bigcirc	\bigcirc	\bigcirc	\bigcirc
I could see myself having a meaningful occupation (e.g., working in tourism or volunteering) due, partly, to penguins existing in the area.		\circ	0	\circ	\circ

	Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree
Penguins are important for my recreation in the area. I enjoy seeing and/or interacting with them.		\circ	0	\circ	\circ
Penguins contribute to my strengthening of social bonds – for example, when volunteering with penguins.		\circ	\circ	\circ	\circ
personally value penguins' role in the local ecology.		\bigcirc	\bigcirc	\bigcirc	\circ
Penguins are important in their own right, even if I never see them or interact with them.		\circ	\circ	\circ	\circ
	Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree
It is important that the penguins are currently around for other people to enjoy or benefit from.		\circ	\circ	\circ	\circ
It is important to ensure the penguins are still around for future generations.	O	\circ	\circ	\circ	0
	•	0	0	0	0

Q10. You said that you disagreed with the following statement: "I care about maintaining the population of penguins in Cockburn Sound". Could you say why?

n/a

Q11. Dolphins

Indo-Pacific Bottlenose Dolphins are resident marine mammals in Cockburn Sound. Dolphins are highly intelligent and form strong social bonds with a complex system of communication.

There are at least 65 long-term resident dolphins in Cockburn Sound. Dolphins use Cockburn Sound for feeding, resting, and caring for calves.

Q12. Please select your level of agreement or disagreement with each statement listed on whether and how
you personally value the dolphins of Cockburn Sound.

Strongly

Disagree

Strongly

Agree

Unsure

Agree

Disagree

Dolphins contribute to my enjoyment of the Cockburn Sound marine environment. Dolphins are an important part of the history and/or cultural heritage					
		\circ	\circ	\circ	\circ
of the area.	•	\circ	\circ	\circ	\circ
Dolphins are important for scientific research and education.		\circ	\bigcirc	\bigcirc	\bigcirc
I could see myself having a meaningful occupation (e.g., working in tourism or volunteering) due, partly, to Dolphins existing in the area.	•	0	\circ	\circ	\circ
	Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree
Dolphins are important for my recreation in the area. I enjoy seeing and/or interacting with them.	•	\circ	0	\circ	\circ
I personally value the role of dolphins in the local ecology.	O	\circ	\bigcirc	\bigcirc	\bigcirc
Dolphins are important in their own right, even if I might never see them or interact with them.	•	\circ	\circ	\circ	\circ
		\circ	\circ	\circ	\circ
·	Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree
to enjoy or benefit from. It is important to ensure that dolphins are still around for future	Strongly	O	Unsure	Agree	Strongly
It is important to ensure that dolphins are still around for future generations.	Strongly Disagree	O	Unsure	Agree	Strongly Agree
It is important that the dolphins are currently around for other people to enjoy or benefit from. It is important to ensure that dolphins are still around for future generations. I care about maintaining dolphins in Cockburn Sound. Dolphins contribute to the strengthening of my social bonds – for example, when i am swimming or walking near to the water.	Strongly Disagree	O	Unsure	Agree	Strongly Agree

n/a

Q14. Seagrass

Seagrasses grow in soft marine sediments, and their health is an indicator of the overall health of Cockburn Sound.

Seagrasses provide habitat for fish and other aquatic organisms, and also improve water quality.

Compared with the 1960s, the area of seagrass in Cockburn Sound has been reduced by about 80 per cent, with about 1000ha currently present in the Sound.

Q15. Now, please select your level of agreement or disagreement with each statement listed on whether and how you personally value the **seagrass in Cockburn Sound**

	Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree
Seagrass contributes to my enjoyment of the Cockburn Sound marine environment.	•	0	0	0	0
Seagrass is an important part of the history and/or cultural heritage of the area.		\circ	\circ	\circ	\circ
Seagrass is important for scientific research and education.	O	\bigcirc	\bigcirc	\circ	\bigcirc
Seagrass is important for my recreation in the area. I enjoy seeing it.		\bigcirc	\bigcirc	\bigcirc	\circ
	Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree
Seagrass contributes to the strengthening of my social bonds – for example, when volunteering replanting seagrass.	•	\circ	\circ	\circ	0
Seagrass contributes to my enjoyment of a pleasant and healthy environment by improving water quality.	•	\circ	\circ	\circ	\circ
I personally value seagrass' role in the local ecology.		\bigcirc	\bigcirc	\bigcirc	\circ
Seagrass is important in its own right, even if I might never see it.		\circ	\circ	\circ	\circ
	Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree
I could see myself having a meaningful occupation (e.g., working in tourism or volunteering) due, partly, to seagrass existing in the area.		\circ	\circ	\circ	0
It is important that seagrass is currently around for other people to enjoy or benefit from.		\circ	\circ	\circ	0
It is important to ensure that seagrass is still around for future generations.		\circ	\circ	\circ	\circ

I care about maintaining the se	eagrass in Cockburn	Sound.		\circ	\circ	\circ	\circ
<i>Q16.</i> You said that you Cockburn Sound". Co			tatement: "I ca	are about m	aintaining tl	ne seagras	s in
n/a							
<i>Q20.</i> Seahorses							
We are using the term dragons and pipefish.	"Seahorses" to	o describe a gro	up of fish with	a distinctive	e appearanc	ce, includin	g sea
West Australian seaho	orses are protec	cted internationa	ally and little is	known abo	ut their pop	ulation nun	nbers.
Pipefish	Seahorse	Sea dragon					
<i>Q21.</i> Now, please selented how you personally varies				with each st	atement list	ed on whe	ther and
			Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree

	Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree
Seahorses contribute to my enjoyment of the Cockburn Sound marine environment.	•	0	0	0	0
Seahorses are an important part of the history and/or cultural heritage of the area.		\circ	0	\circ	\circ
Seahorses are important for scientific research and education.		\bigcirc	\bigcirc	\bigcirc	\bigcirc
Seahorses are important for my recreation in the area. I enjoy seeing them.		\circ	0	\circ	\circ
	Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree
I could see myself having a meaningful occupation (e.g., working in tourism or volunteering) due, partly, to seahorses existing in the area.		0	0	0	0
I personally value the role of seahorses in the local ecology.		\bigcirc	\bigcirc	\circ	\circ
Seahorses are important in their own right, even if I might never see them.		\circ	\circ	\circ	\circ
It is important that seahorses are currently around for people other than myself to enjoy or benefit from.		\circ	\circ	\circ	\circ

	Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree
It is important that seahorses are still around for future generations.		\bigcirc	\bigcirc	\bigcirc	\circ
Seahorses contribute to the strengthening of my social bonds – for example, when swimming or diving.		\circ	0	\circ	0
I care about maintaining seahorses in Cockburn Sound.		\bigcirc	\bigcirc	\bigcirc	\circ
O56. You said that you disagreed with the following st	atement: "I c	care about m	naintaining :	seahorses	in

Q56. You said that you disagreed with the following statement: "I care about maintaining seahorses in Cockburn Sound". Could you say why?

n/a

Q17. Fish

A wide variety of fish live in Cockburn Sound, some of them are important for commercial or recreational fishing.

Broadly, there are three types of fish communities in Cockburn Sound:

- Those that rely on seagrass: weeping toadfish, pipefish species, western striped grunter, sixspine leatherjacket and snook
- Those that rely on soft sediment (like sand): whiting, rays
- Those that rely on limestone structures: including pink snapper, western butterfish and silver trevally.

Q18. Now, please select your level of agreement or disagreement with each statement listed on whether and how you personally value the **fish of Cockburn Sound**

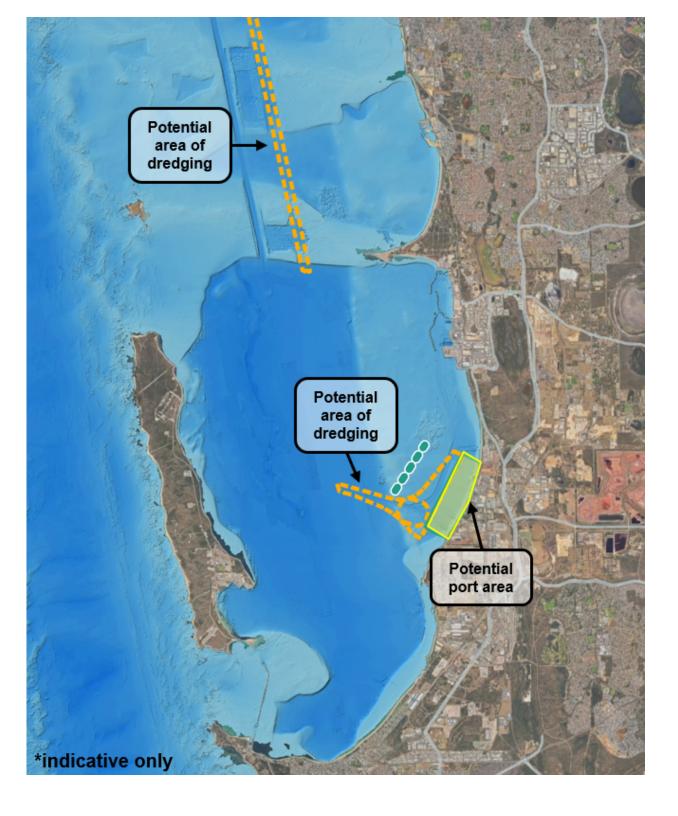
	Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree
I enjoy and/or rely on eating Cockburn Sound fish for food.	O	\circ	0	\circ	0
Fish contribute to my enjoyment of the Cockburn Sound marine environment.	•	\circ	0	\circ	\circ
Fish are an important part of the history and/or cultural heritage of the area.		\circ	\circ	\circ	\circ
Fish are important for scientific research and education.		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree

tourism or volunteering) due, partly, to the fish that exist in the area.		\circ	\circ	\circ		
Fish are important for my recreation in the area.	O	\circ	\circ	\circ	\circ	
Fish contribute to the strengthening of my social bonds – for example, when fishing.	•	\circ	\circ	\circ	\circ	
I personally value the role of fish in the local ecology.		\bigcirc	\circ	\bigcirc	\bigcirc	
	Strongly Disagree	Disagree	Unsure	Agree	Strongly Agree	
Fish are important in their own right, even if I might never see them or interact with them.	•	\circ	\circ	\circ	\circ	
It is important that fish are currently around for other people to enjoy or benefit from.		\circ	\circ	\circ	\circ	
It is important to ensure that fish are still around for future generations.	•	\circ	\circ	\circ	\circ	
I care about maintaining the fish in Cockburn Sound.		\circ	\circ	\circ	\circ	
Q22. In the previous sections, we have been discussin Cockburn Sound. Are there any other species or en Cockburn Sound, regardless of whether you will ever	nvironmental	attributes th	nat are impo			

Q23. Options for the management of environmental impacts in Cockburn Sound.

I could see myself having a meaningful occupation (e.g., working in

The WA Government is planning for a new container terminal in Cockburn Sound. Larger vessels and increased congestion on roads in and out of Fremantle means it will be challenging to move containers through the area in the future, so an alternative is needed.


Most of what we buy and what we have in our homes comes to us through containers. Ports also support WA's exports industry as well as local businesses, providing materials needed for construction and production.

The current proposal for a new port in Cockburn Sound will require substantial development activity. This would occur along the shoreline where the port would be and also in the ocean where dredging of new channels would be required to enable large ships to access the port.

These changes may have a negative impact on the marine ecosystem in the Sound, both during development and when the port is operating.

There are also opportunities to invest in environmental projects that could offset or, if they are large enough, even improve the condition of the marine ecosystem in the Sound.

The map below shows, in general terms, where the port may be located within the Sound.

Q24. The marine animals and plants discussed earlier could be impacted in a range of ways depending on how the port is designed, and what sort of investments are made to improve the environment.

In this section we will describe to you possible changes in the level of the key environmental assets. At the moment the port design has not been completed and the assessment of potential impacts is ongoing. The changes we present (both positive and negative) should be taken as potential changes that will exist in the long run.

What we are interested in is how you would feel if these impacts occurred, to help inform possible designs of the port.

Little Penguins

Impacts of port development:

The poor water quality caused by dredging could make it harder for Little Penguins to find fish to eat, either because they can't see them, or because the fish move away from areas of disturbance. If this occurs during their breeding season, it could reduce breeding success.

At the moment there are approximately 600 Little Penguins present in the Sound. Depending on when and where the dredging occurs, the number of Little Penguin hatchlings that survive each year may be reduced, leading to lower population levels.

Opportunities to improve the environment:

Access to food may be secured for penguins during breeding season through creation of additional habitats for the fish that they feed on, or construction of 'fish aggregation devices' that lure the fish to areas where the penguins can safely feed.

Depending on the amount of environmental management and investment during the port's development and operation, the number of penguins could decrease to 500 or increase to 700 individuals.

Q25. Have you ever seen Little Penguins along the Perth coastal region?

Yes,	I have	seen	them

O No, I have never seen them

Q26. Dolphins

Impacts of port development:

There are approximately 65 resident dolphins in Cockburn Sound. Dolphins may be affected by the increased vessel traffic, both in terms of direct vessel strikes causing injuries or death, as well as behavioural effects of increased vessel noise that could make it harder for the animals to find food or breed successfully.

Opportunities to improve the environment:

Research to understand the mammal's abundance, careful design of vessel routes, slower vessel speeds,

and development of new technologies to reduce noise produced by vessels can all help to reduce the rates of vessel strike and negative behavioural effects.

A combination of research, education, management, and new technology could prevent any loss of dolphins as a result of increased vessel traffic.

Depending on the amount of environmental management and investment during the port's development and operation, the number of dolphins could decrease to 40 or increase to 80 individuals.

Q27. Have you ever seen dolphins in the water along the Perth coast region?

	Voc	I have	0000	thom
()	Yes.	i nave	seen	mem

- O No, I have never seen them
- Unsure

Q28. Seagrass

Impact of port development

Seagrass meadows can be negatively affected by dredging, due to direct disruption or subsequent poor water quality. There are 1000 hectares of seagrass currently in Cockburn Sound (equivalent to 500 Optus stadiums), and there could be a decline of depending on which areas are dredged.

Opportunities to improve the environment:

Seagrass meadows are already being successfully restored on a smaller scale in Cockburn Sound and this activity could be scaled up to cover much larger areas.

Depending on the amount of environmental management and investment during the port's development and operation, the area of seagrass could decrease to 800 or increase to 1200 hectares in Cockburn Sound.

Q29. Have you ever been involved in seagrass conservation or restoration in any way?

- Yes, I have
- No, I have not
- Unsure

Q30. Seahorses, sea dragons and pipefish

Impacts of port development:

Although it is known that there are currently 17 species of this group of fish living in Cockburn sound, relatively little is known about them. There is therefore a risk that with the port development, some species will no longer be present.

Opportunities to improve the environment:

It is possible to fund additional research to understand impacts on these types of fish, with the resources to undertake management of any threats once they are understood. With sufficient resources it would be possible to ensure that the number of species present in Cockburn Sound could be maintained, or even increase.

Depending on the amount of environmental management and investment during the port's development and operation, the number of species that are recorded as present and maintained in the Sound could decrease to 13 or increase to 21.

Q31. Have you ever seen a seahorse, sea dragon or pipefish along the beach, coast or in the waters in Western Australia?

- Yes, I have seen them
- No, I have never seen them
- Unsure

Q32. Improved 'hard' habitats

Seagrass and sandy areas are the main habitat types in Cockburn Sound at present. Historically, there may have been other habitats, including hard habitats like limestone shellfish reefs. These areas provide important habitats for a variety of species. There are no substantial areas of hard habitats currently found in the Sound.

Opportunities to improve the environment:

Habitat restoration could be undertaken to complement seagrass restoration activities with hard habitats such as shellfish reefs, or other artificial reef structures on which marine flora and fauna can grow. Artificial reefs have proven to be very effective in improving the number and diversity of species in an area.

Depending on the amount of environmental management and investment during the port's development and operation, up to 50 hectares of artificial reefs could be constructed in Cockburn Sound.

Q33. Have you heard about people creating artificial reefs along the coast of WA?

- Yes
- O No
- Unsure

Q34. The costs of development

The cost to you

The redevelopment of port infrastructure in Cockburn Sound, and managing the surrounding environment will require substantial investment and the costs of maintaining and operating the ports will be borne by the industries that use the facilities.

These increases in costs will be passed on to the public and the consumers of those industries, in increased prices of goods. Depending on where the development occurs, and the details of the port development, these costs will vary.

Because of this, there would be an increase in your household living expenses, through higher prices of goods.

This will be in dollars per year and will remain for the foreseeable future.

Given the likelihood of increased expenses, we want to understand what your preferences are for the port development, and how this will affect you.

Q45. What was your income over the last 12 months (before tax)?

If you share a household with other income-earning members, and financial decisions are made based on your shared total income, provide the **HOUSEHOLD** income for the last 12 months.

If you make financial decisions independently of anyone else and based solely on your own income, or if you are unsure of the household income, provide your **INDIVIDUAL** income for the last 12 months.

\bigcirc	Under \$13,000 (under \$250/week)
\bigcirc	\$13,000-\$25,999 (\$250-\$500/week)
\bigcirc	\$26,000-\$41,599 (\$500-\$800/week)
\bigcirc	\$41,600-\$62,999 (\$800-\$1200/week)
\bigcirc	\$62,400-\$88,399 (\$1200-\$1700/week)
\bigcirc	\$88,400-\$129,999 (\$1700-\$2500/week)
\bigcirc	\$130,000-\$181,999 (\$2500-\$3500/week)
\bigcirc	\$182,000 and over (\$3000+/week)
	prefer not to say

Q35. If you had a choice of how the port development were to happen.....

In the following questions we will present you with a number of options for the management of the environmental impacts that may arise from the development of the port.

The purpose of these questions is to identify what your preferences would be for potential impacts, so that they can inform design.

These will differ by the impacts on the marine animals and plants, and may include both positive and negative outcomes, and will depend on what investments are made to offset negative impacts.

There will also be an increase in costs to you for each option, shown as an increase in your household costs each year.

It is important to remember that there is no specific design of the port that has been decided on yet.

This information will be provided to those designing the port to use in their planning, and so it is important that you answer as accurately as possible.

	Option 1	Option 2	Current level
Penguin population	650	650	600
Mammals: Dolphins present	60	50	65
Seagrass area (ha)	900	900	1,000
Number of "Seahorse" species present	13	13	17
Area of hard habitats added (ha)	30	20	0
Increased cost to your household, each year	\$300	\$300	
Which one would you prefer?			

You can see two options, each with different levels of the environmental attributes and cost. The current levels are also given for reference.

You can select only one of the two options, with the selected option becoming green.

s1. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	500	550	600
Number of Dolphins in Cockburn Sound	40	80	65
Total area of seagrass (ha)	1,100	700	1,000
Number of "Seahorse" species present	21	13	17
Area of artificial reef added (ha)	10	40	0
Increased cost to your household, each year	\$20	\$100	
Which one would you prefer?			

s2. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	550	650	600
Number of Dolphins in Cockburn Sound	70	80	65
Total area of seagrass (ha)	1,000	1,000	1,000
Number of "Seahorse" species present	21	13	17
Area of artificial reef added (ha)	50	40	0
Increased cost to your household, each year	\$20	\$50	
Which one would you prefer?			

s3. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	500	550	600
Number of Dolphins in Cockburn Sound	60	70	65
Total area of seagrass (ha)	1,100	1,000	1,000
Number of "Seahorse" species present	21	13	17
Area of artificial reef added (ha)	10	30	0
Increased cost to your household, each year	\$50	\$50	
Which one would you prefer?			

s4. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	550	550	600
Number of Dolphins in Cockburn Sound	50	80	65
Total area of seagrass (ha)	1,100	1,300	1,000
Number of "Seahorse" species present	21	13	17
Area of artificial reef added (ha)	40	30	0
Increased cost to your household, each year	\$50	\$300	
Which one would you prefer?			

s5. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	700	700	600
Number of Dolphins in Cockburn Sound	80	80	65
Total area of seagrass (ha)	900	700	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	30	40	0
Increased cost to your household, each year	\$300	\$20	
Which one would you prefer?			

s6. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	600	600	600
Number of Dolphins in Cockburn Sound	80	40	65
Total area of seagrass (ha)	1,000	1,300	1,000
Number of "Seahorse" species present	19	15	17
Area of artificial reef added (ha)	20	0	0
Increased cost to your household, each year	\$20	\$300	
Which one would you prefer?			

s7. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	650	500	600
Number of Dolphins in Cockburn Sound	70	50	65
Total area of seagrass (ha)	1,100	1,000	1,000
Number of "Seahorse" species present	13	19	17
Area of artificial reef added (ha)	20	30	0
Increased cost to your household, each year	\$150	\$300	
Which one would you prefer?			

s8. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	600	600	600
Number of Dolphins in Cockburn Sound	40	60	65
Total area of seagrass (ha)	700	1,100	1,000
Number of "Seahorse" species present	21	21	17
Area of artificial reef added (ha)	40	0	0
Increased cost to your household, each year	\$500	\$100	
Which one would you prefer?			

s9. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	500	550	600
Number of Dolphins in Cockburn Sound	70	40	65
Total area of seagrass (ha)	1,100	900	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	30	30	0
Increased cost to your household, each year	\$300	\$50	
Which one would you prefer?			

s10. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	700	650	600
Number of Dolphins in Cockburn Sound	50	60	65
Total area of seagrass (ha)	1,300	1,300	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	40	50	0
Increased cost to your household, each year	\$150	\$300	
Which one would you prefer?			

s11. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	600	550	600
Number of Dolphins in Cockburn Sound	40	50	65
Total area of seagrass (ha)	700	900	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	20	10	0
Increased cost to your household, each year	\$50	\$50	
Which one would you prefer?			

s12. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	500	700	600
Number of Dolphins in Cockburn Sound	70	80	65
Total area of seagrass (ha)	900	700	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	10	40	0
Increased cost to your household, each year	\$20	\$20	
Which one would you prefer?			

s13. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	700	550	600
Number of Dolphins in Cockburn Sound	60	50	65
Total area of seagrass (ha)	900	1,300	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	40	40	0
Increased cost to your household, each year	\$100	\$300	
Which one would you prefer?			

s14. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	600	500	600
Number of Dolphins in Cockburn Sound	60	60	65
Total area of seagrass (ha)	700	1,100	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	50	0	0
Increased cost to your household, each year	\$50	\$100	
Which one would you prefer?			

s15. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	650	500	600
Number of Dolphins in Cockburn Sound	40	70	65
Total area of seagrass (ha)	1,300	1,100	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	10	20	0
Increased cost to your household, each year	\$150	\$300	
Which one would you prefer?			

s16. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	500	650	600
Number of Dolphins in Cockburn Sound	40	50	65
Total area of seagrass (ha)	1,000	1,100	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	0	30	0
Increased cost to your household, each year	\$100	\$300	
Which one would you prefer?			

s17. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	700	600	600
Number of Dolphins in Cockburn Sound	60	40	65
Total area of seagrass (ha)	1,300	1,100	1,000
Number of "Seahorse" species present	21	13	17
Area of artificial reef added (ha)	10	40	0
Increased cost to your household, each year	\$300	\$50	
Which one would you prefer?			

s18. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	550	550	600
Number of Dolphins in Cockburn Sound	60	80	65
Total area of seagrass (ha)	1,000	1,100	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	30	10	0
Increased cost to your household, each year	\$50	\$300	
Which one would you prefer?			

s19. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	600	500	600
Number of Dolphins in Cockburn Sound	70	60	65
Total area of seagrass (ha)	900	900	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	40	10	0
Increased cost to your household, each year	\$500	\$50	
Which one would you prefer?			

s20. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	650	500	600
Number of Dolphins in Cockburn Sound	40	40	65
Total area of seagrass (ha)	900	700	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	0	30	0
Increased cost to your household, each year	\$150	\$50	
Which one would you prefer?			

s21. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	500	600	600
Number of Dolphins in Cockburn Sound	40	60	65
Total area of seagrass (ha)	1,000	900	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	0	10	0
Increased cost to your household, each year	\$100	\$50	
Which one would you prefer?			

s22. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	500	700	600
Number of Dolphins in Cockburn Sound	80	80	65
Total area of seagrass (ha)	1,100	1,000	1,000
Number of "Seahorse" species present	17	13	17
Area of artificial reef added (ha)	50	30	0
Increased cost to your household, each year	\$20	\$150	
Which one would you prefer?			

s23. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	550	700	600
Number of Dolphins in Cockburn Sound	50	70	65
Total area of seagrass (ha)	1,100	900	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	30	10	0
Increased cost to your household, each year	\$100	\$500	
Which one would you prefer?			

s24. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	500	700	600
Number of Dolphins in Cockburn Sound	40	60	65
Total area of seagrass (ha)	1,100	900	1,000
Number of "Seahorse" species present	15	17	17
Area of artificial reef added (ha)	20	0	0
Increased cost to your household, each year	\$20	\$300	
Which one would you prefer?			

s25. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	650	650	600
Number of Dolphins in Cockburn Sound	80	60	65
Total area of seagrass (ha)	900	1,100	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	50	40	0
Increased cost to your household, each year	\$150	\$20	
Which one would you prefer?			

s26. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	500	550	600
Number of Dolphins in Cockburn Sound	80	70	65
Total area of seagrass (ha)	900	1,000	1,000
Number of "Seahorse" species present	21	13	17
Area of artificial reef added (ha)	30	30	0
Increased cost to your household, each year	\$150	\$150	
Which one would you prefer?			

s27. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	600	700	600
Number of Dolphins in Cockburn Sound	60	50	65
Total area of seagrass (ha)	1,300	1,300	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	10	30	0
Increased cost to your household, each year	\$100	\$100	
Which one would you prefer?			

s28. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	500	650	600
Number of Dolphins in Cockburn Sound	40	50	65
Total area of seagrass (ha)	1,000	900	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	50	40	0
Increased cost to your household, each year	\$100	\$300	
Which one would you prefer?			

s29. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	550	550	600
Number of Dolphins in Cockburn Sound	70	60	65
Total area of seagrass (ha)	1,300	1,100	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	20	30	0
Increased cost to your household, each year	\$300	\$50	
Which one would you prefer?			

s30. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	500	500	600
Number of Dolphins in Cockburn Sound	40	70	65
Total area of seagrass (ha)	1,100	1,300	1,000
Number of "Seahorse" species present	21	13	17
Area of artificial reef added (ha)	10	20	0
Increased cost to your household, each year	\$20	\$500	
Which one would you prefer?			

s31. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	600	700	600
Number of Dolphins in Cockburn Sound	40	40	65
Total area of seagrass (ha)	700	900	1,000
Number of "Seahorse" species present	17	19	17
Area of artificial reef added (ha)	30	10	0
Increased cost to your household, each year	\$20	\$150	
Which one would you prefer?			

s32. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	500	600	600
Number of Dolphins in Cockburn Sound	50	60	65
Total area of seagrass (ha)	1,000	900	1,000
Number of "Seahorse" species present	13	17	17
Area of artificial reef added (ha)	20	30	0
Increased cost to your household, each year	\$300	\$20	
Which one would you prefer?			

s33. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	600	550	600
Number of Dolphins in Cockburn Sound	40	60	65
Total area of seagrass (ha)	1,000	900	1,000
Number of "Seahorse" species present	21	13	17
Area of artificial reef added (ha)	50	10	0
Increased cost to your household, each year	\$150	\$50	
Which one would you prefer?			

s34. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	700	700	600
Number of Dolphins in Cockburn Sound	70	70	65
Total area of seagrass (ha)	1,100	1,100	1,000
Number of "Seahorse" species present	21	13	17
Area of artificial reef added (ha)	20	40	0
Increased cost to your household, each year	\$100	\$300	
Which one would you prefer?			

s35. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	650	500	600
Number of Dolphins in Cockburn Sound	80	70	65
Total area of seagrass (ha)	900	1,000	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	30	40	0
Increased cost to your household, each year	\$50	\$50	
Which one would you prefer?			

s36. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	550	600	600
Number of Dolphins in Cockburn Sound	50	70	65
Total area of seagrass (ha)	1,300	1,300	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	0	20	0
Increased cost to your household, each year	\$100	\$500	
Which one would you prefer?			

s37. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	600	500	600
Number of Dolphins in Cockburn Sound	80	80	65
Total area of seagrass (ha)	700	1,000	1,000
Number of "Seahorse" species present	21	13	17
Area of artificial reef added (ha)	10	10	0
Increased cost to your household, each year	\$50	\$300	
Which one would you prefer?			

s38. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	600	550	600
Number of Dolphins in Cockburn Sound	80	50	65
Total area of seagrass (ha)	1,100	1,000	1,000
Number of "Seahorse" species present	21	21	17
Area of artificial reef added (ha)	40	30	0
Increased cost to your household, each year	\$100	\$20	
Which one would you prefer?			

s39. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	550	700	600
Number of Dolphins in Cockburn Sound	50	50	65
Total area of seagrass (ha)	700	900	1,000
Number of "Seahorse" species present	19	21	17
Area of artificial reef added (ha)	30	0	0
Increased cost to your household, each year	\$150	\$150	
Which one would you prefer?			

s40. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	500	500	600
Number of Dolphins in Cockburn Sound	70	80	65
Total area of seagrass (ha)	700	900	1,000
Number of "Seahorse" species present	21	13	17
Area of artificial reef added (ha)	30	0	0
Increased cost to your household, each year	\$100	\$150	
Which one would you prefer?			

s41. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	550	550	600
Number of Dolphins in Cockburn Sound	60	80	65
Total area of seagrass (ha)	1,000	1,000	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	40	10	0
Increased cost to your household, each year	\$20	\$20	
Which one would you prefer?			

s42. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	550	700	600
Number of Dolphins in Cockburn Sound	50	40	65
Total area of seagrass (ha)	1,300	1,100	1,000
Number of "Seahorse" species present	21	13	17
Area of artificial reef added (ha)	10	30	0
Increased cost to your household, each year	\$100	\$50	
Which one would you prefer?			

s43. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	500	650	600
Number of Dolphins in Cockburn Sound	40	50	65
Total area of seagrass (ha)	1,000	1,100	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	30	50	0
Increased cost to your household, each year	\$50	\$500	
Which one would you prefer?			

s44. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	600	600	600
Number of Dolphins in Cockburn Sound	40	70	65
Total area of seagrass (ha)	1,300	900	1,000
Number of "Seahorse" species present	13	21	17
Area of artificial reef added (ha)	10	20	0
Increased cost to your household, each year	\$100	\$50	
Which one would you prefer?			

s45. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	650	500	600
Number of Dolphins in Cockburn Sound	40	70	65
Total area of seagrass (ha)	900	1,300	1,000
Number of "Seahorse" species present	17	19	17
Area of artificial reef added (ha)	0	50	0
Increased cost to your household, each year	\$20	\$300	
Which one would you prefer?			

s46. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	700	550	600
Number of Dolphins in Cockburn Sound	60	80	65
Total area of seagrass (ha)	1,100	1,100	1,000
Number of "Seahorse" species present	21	21	17
Area of artificial reef added (ha)	40	20	0
Increased cost to your household, each year	\$300	\$20	
Which one would you prefer?			

s47. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	650	600	600
Number of Dolphins in Cockburn Sound	70	70	65
Total area of seagrass (ha)	700	700	1,000
Number of "Seahorse" species present	15	19	17
Area of artificial reef added (ha)	20	10	0
Increased cost to your household, each year	\$500	\$150	
Which one would you prefer?			

s48. The following 2 options show possible environmental impacts that could occur from different port designs. If these were the only 2 options being considered for the port development, which one would you prefer to see implemented?

	Option 1	Option 2	Current level
Number of Penguins in Cockburn Sound	650	600	600
Number of Dolphins in Cockburn Sound	70	50	65
Total area of seagrass (ha)	1,300	900	1,000
Number of "Seahorse" species present	17	13	17
Area of artificial reef added (ha)	50	40	0
Increased cost to your household, each year	\$50	\$20	
Which one would you prefer?			

Q36. Did you find it difficult to make choices between the 2 options?

Very Difficult						
1	2	3	4	5	6	Not Difficult 7
0	0	0	0	0	0	

Q37. Did you ignore any of the elements when you made your choices? Select all that apply.

Penguin population

Dolphin population

Seagrass area

Seahorse/sea dragon/pipefish species present

I did not ignore any elements							
Q38. How likely do you thin environmental impacts of th		f this surve	ey will influe	nce the dec	isions about	managing	j the
	Very Unlikely 1	2	3	4	5	6	Very likely 7
	0	0	0	0	0	0	•
Q39. Currently our container port at all developed in Coc This would mean a higher of also an increase in traffic coroad and rail networks to ex Sound.	kburn Sound, environmental ongestion as th opand around l	and all inc impact in nere is less Fremantle	reases in fur Fremantle d s space avai , compared t	ture contain lue to the po ilable for the	er traffic go ort having to landward s	through Fr expand th ide of the	remantle? ere, and port and its
I would prefer there to be no p							
I would prefer the port developedI am unsure	pment in Cockburn	Sound to pro	oceea				
<i>Q40.</i> We have noticed that select the statement that is			ption with th	e lowest cos	st to you, in a	all choices	s. Please
Considering the levels of all the	ne environmental a	ttributes and t	the cost, these v	vere best.			
 I would prefer not to have to r 	nake these choices	s, and so sele	cted the cheape	est one.			
Currently, I have little money t	to spare, and that v	vas the most i	important thing v	when making m	y choices.		
Other							

Q41. Your views on the way the Cockburn port proposal has been developed

Area of artificial reef added

Increased cost

In the following questions we ask for your attitudes towards the development of the proposed new port, and the process involved.

We will use the term "The Port" to describe the physical infrastructure being proposed.

We will use the term "Westport" to describe the Western Australia State government departments involved in developing and operating the port.

If you feel you do not have a view about the question, or are unsure, then answer "neither agree nor disagree".

	Strongly disagree	Disagree	Neither agree nor disagree	Agree	Strongly agree
The people of Western Australia can economically benefit from the development of The Port.	0	0	•	0	0
Without the development of The Port, the people of Western Australia will not be able to achieve their most important goals.	\circ	\circ		\circ	\circ
Westport can be relied on to do what they say they will do in the media.	\circ	\circ		\circ	\circ
I am very satisfied with the process by which Westport is developing The Port.	\circ	\circ		\circ	\circ
The development and operation of The Port will be a benefit to the Western Australian population.	\circ	\circ		\circ	\circ
Westport listens to the Western Australian population's concerns about The Port's development and operation.	\circ	\circ		\circ	\circ
In the long-term, the development of The Port will make a positive contribution to the well-being of the people of Western Australia.	0	\circ	•	0	0

Q42. Your views on the way the Cockburn port proposal has been developed.

In the following questions we ask for your attitudes towards the development of the proposed new port, and the process involved.

	Strongly disagree	Disagree	Neither agree nor disagree	Agree	Strongly agree
Westport treats everyone fairly.	0	0	•	\circ	0
Westport respects the Western Australian way of doing things.	\circ	\bigcirc		\bigcirc	\circ
The Western Australian population and Westport have a similar vision for the future of Western Australia.	0	\circ		\circ	\circ
Westport will give support to those who will be negatively impacted by the Port Development.	0	\circ		\circ	\circ
Westport provides opportunities for the Western Australian population to have input into decision making.	0	\circ		\circ	\circ
Westport takes into account the interests of the Western Australian population.	0	0		\circ	\circ
Westport is concerned about the wellbeing of the Western Australian population.	0	\circ		\circ	\circ
Westport openly shares information that is relevant to the Western Australian population.	0	\circ		\circ	\circ

Q43. A little more about you ...

Which of the following household descriptions best fits you?

\bigcirc	Single without children
\bigcirc	Single with children – at least some of the children are still dependent $% \left(1\right) =\left(1\right) \left(1\right) \left$
\bigcirc	Single with children – with all children having left home
\bigcirc	Couple without children
\bigcirc	Couple with children – at least some of the children are still dependent

\circ	Couple with children – with all children having left home
	Other
Q44.	What is your highest level of education?
\circ	Primary / some secondary school
\bigcirc	Year 12
\circ	Trade or technical certificate
\circ	Undergraduate university degree
\circ	Postgraduate university degree
	prefer not to say
046	Do you anticipate a reduction in your individual income over the next 12 months?
Q40.	bo you articipate a reduction in your maintada meome over the next 12 months:
\bigcirc	yes
\bigcirc	No
	Don't know
	Boilt Know
047	De veu identificae Aberiainal Australian or Tarres Ctrait Islandaro
Q47.	Do you identify as Aboriginal Australian or Torres Strait Islander?
	Yes, Aboriginal Australian
	Yes, Torres Strait Islander
0	
0	Yes, Aboriginal Australian and Torres Strait Islander
	No
Q48.	Would you describe yourself as a regular recreational fisher (i.e. fish more than once a month)?
_	
0	Yes
	No
Q49.	Are you a member of an environmental group (either local, or national such as WWF)
\circ	Yes
	No

Q50.	Before this survey, had you heard of the proposed port development in Cockburn Sound?
•	Yes No
Q51.	Before this survey, had you heard of the "Westport" organisation?
 	Yes No
Q52.	Thank you for completing this survey!
If yo	u have any further comments you would like to make, please leave them in the box below.
n/a	

Appendix 5 Data codebook

Survey question, question number and coding of responses.

Excludes choice sets

Duration__in_seconds_ duration of survey in seconds

q2 consent.

Yes	1
No	2

q3 What is your gender?

Male	1
Female	2
Other/non-binary	3
Prefer not to say	4

q4 Which age group applies to you?

Less than 18 years	1
18-29 years	2
30-39 years	4
40-49 years	6
50-59 years	8
60-69 years	10
70-79 years	12
80 years and over	15

q5 Please state the postcode of your usual place of residence

q6 Please indicate how often you have visited the Cockburn Sound area in the last 5 years:

Every day	1
A few times a week	2
About once a week	3
About once a fortnight	4
About once a month	5
A few times a year	6
Less than once a year	7
I have not visited Cockburn Sound in the last 5 years	8

q7 Please indicate what sorts of activities you have undertaken in Cockburn Sound during any visits to this location in the last 5 years. Select all relevant options.

q7_1	work	q7_17	water skiing
q7_2	visiting family and/or friends	q7_18	beach activities
q7_3	motor boating	q7_19	walking/running
q7_4	sailing	q7_20	horseback riding
q7_5	swimming	q7_21	horse exercising
q7_6	scuba diving	q7_22	dog beach activities
q7_7	kayaking	q7_23	cycling
q7_8	windsurfing	q7_24	birdwatching
q7_9	hoverboarding	q7_25	picnicking
q7_10	jet-skiing	q7_26	community volunteering
q7_11	snorkelling	q7_27	camping/caravan
q7_12	free diving	q7_28	school/community camps
q7_13	SUP boarding	q7_29	fishing
q7_14	kite surfing	q7_30	hydrofoiling
q7_15	kite boarding	q7_31	other
q7_16	wakeboarding	q7_31_text	OE

		Strongly disagree 1 Disagree 2 Unsure 3 Agree 4 Strongly agree 5
q9_1	Penguins contribute to my enjoyment of the Cockburn Sound marine environment.	
q9_2	Penguins are an important part of the history and cultural heritage of the area.	
q9_3	Penguins are important for scientific research and education. (
q9_4	I could see myself having a meaningful occupation (e.g., working in tourism or volunteering) due, partly, to penguins existing in the area.	
q9_5	Penguins are important for my recreation in the area. I enjoy seeing and/or interacting with them.	
q9_6	Penguins contribute to my strengthening of social bonds – for example, when volunteering with penguins.	
q9_7	I personally value penguins' role in the local ecology.	
q9_8	Penguins are important in their own right, even if I never see them or interact with them.	
q9_9	It is important that the penguins are currently around for other people to enjoy or benefit from.	
q9_10	It is important to ensure the penguins are still around for future generations.	
q9_11	I care about maintaining the population of penguins in Cockburn Sound.	

q10 You said that you disagreed with the following statement: "I care about maintaining the population of penguins in Cockburn Sound". Could you say why?

OE

		Strongly disagree 1 Disagree 2 Unsure 3 Agree 4 Strongly agree 5
q12_1	Dolphins contribute to my enjoyment of the Cockburn Sound marine environment.	
q12_2	Dolphins are an important part of the history and/or cultural heritage of the area.	
q12_3	Dolphins are important for scientific research and education.	
q12_4	I could see myself having a meaningful occupation (e.g., working in tourism or volunteering) due, partly, to Dolphins existing in the area.	
q12_5	Dolphins are important for my recreation in the area. I enjoy seeing and/or interacting with them.	
q12_6	I personally value the role of dolphins in the local ecology.	
q12_7	Dolphins are important in their own right, even if I might never see them or interact with them.	
q12_8	It is important that the dolphins are currently around for other people to enjoy or benefit from.	
q12_9	It is important to ensure that dolphins are still around for future generations.	
q12_10	I care about maintaining dolphins in Cockburn Sound.	
q12_12	Dolphins contribute to the strengthening of my social bonds – for example, when i am swimming or walking near to the water.	
q12_11	Dolphins contribute to my social bonds	

q13 You said that you disagreed with the following statement: "I care about maintaining the dolphins in Cockburn Sound". Could you say why?

OE

		Strongly disagree 1 Disagree 2 Unsure 3 Agree 4 Strongly agree 5
q15_1	Seagrass contributes to my enjoyment of the Cockburn Sound marine environment.	
q15_2	Seagrass is an important part of the history and/or cultural heritage of the area.	
q15_3	Seagrass is important for scientific research and education.	
q15_4	Seagrass is important for my recreation in the area. I enjoy seeing it.	
q15_5	Seagrass contributes to the strengthening of my social bonds – for example, when volunteering replanting seagrass.	
q15_6	Seagrass contributes to my enjoyment of a pleasant and healthy environment by improving water quality.	
q15_7	I personally value seagrass' role in the local ecology.	
q15_8	Seagrass is important in its own right, even if I might never see it.	
q15_9	I could see myself having a meaningful occupation (e.g., working in tourism or volunteering) due, partly, to seagrass existing in the area.	
q15_10	It is important that seagrass is currently around for other people to enjoy or benefit from.	
q15_11	It is important to ensure that seagrass is still around for future generations.	
q15_12	I care about maintaining the seagrass in Cockburn Sound.	

q16 You said that you disagreed with the following statement: "I care about maintaining the seagrass in Cockburn Sound". Could you say why?

OE

		Strongly disagree 1 Disagree 2 Unsure 3 Agree 4 Strongly agree 5
q21_1	Seahorses contribute to my enjoyment of the Cockburn Sound marine environment.	
q21_2	Seahorses are an important part of the history and/or cultural heritage of the area.	
q21_3	Seahorses are important for scientific research and education.	
q21_4	Seahorses are important for my recreation in the area. I enjoy seeing them.	
q21_5	I could see myself having a meaningful occupation (e.g., working in tourism or volunteering) due, partly, to seahorses existing in the area.	
q21_6	I personally value the role of seahorses in the local ecology.	
q21_7	Seahorses are important in their own right, even if I might never see them.	
q21_8	It is important that seahorses are currently around for people other than myself to enjoy or benefit from.	
q21_9	It is important that seahorses are still around for future generations.	
q21_10	Seahorses contribute to the strengthening of my social bonds – for example, when swimming or diving.	
q21_11	I care about maintaining seahorses in Cockburn Sound.	

q56 You said that you disagreed with the following statement: "I care about maintaining seahorses in Cockburn Sound". Could you say why?

OE

		Strongly disagree 1 Disagree 2 Unsure 3 Agree 4 Strongly agree 5
q18_1	I enjoy and/or rely on eating Cockburn Sound fish for food.	
q18_2	Fish contribute to my enjoyment of the Cockburn Sound marine environment.	
q18_3	Fish are an important part of the history and/or cultural heritage of the area.	
q18_4	Fish are important for scientific research and education.	
q18_5	I could see myself having a meaningful occupation (e.g., working in tourism or volunteering) due, partly, to the fish that exist in the area.	
q18_6	Fish are important for my recreation in the area.	
q18_7	Fish contribute to the strengthening of my social bonds – for example, when fishing.	
q18_8	I personally value the role of fish in the local ecology.	
q18_9	Fish are important in their own right, even if I might never see them or interact with them.	
q18_10	It is important that fish are currently around for other people to enjoy or benefit from.	
q18_11	It is important to ensure that fish are still around for future generations.	
q18_12	I care about maintaining the fish in Cockburn Sound.	

q19 You said that you disagreed with the following statement: "I care about maintaining the fish in Cockburn Sound". Could you say why?

OE

q22 In the previous sections, we have been discussing penguins, dolphins, seagrass, "seahorses" and fish in Cockburn Sound. Are there any other species or environmental attributes that are important to you in Cockburn Sound, regardless of whether you will ever use, see, or interact with them?

OE

q25 Have you ever seen Little Penguins along the Perth coastal region?

Yes, I have seen them	1
No, I have never seen them	2
Unsure	3

q27 Have you ever seen dolphins in the water along the Perth coast region?

Yes, I have seen them	1
No, I have never seen them	2
Unsure	3

q29 Have you ever been involved in seagrass conservation or restoration in any way?

Yes, I have	1
No, I have not	2
Unsure	3

q31 Have you ever seen a seahorse, sea dragon or pipefish along the beach, coast or in the waters in Western Australia?

Yes, I have seen them	1
No, I have never seen them	2
Unsure	3

q33 Have you heard about people creating artificial reefs along the coast of WA?

Yes	1
No	2
Unsure	3

q45 What was your income over the last 12 months (before tax)?

Under \$13,000 (under \$250/week)	1
\$13,000-\$25,999 (\$250-\$500/week)	2
\$26,000-\$41,599 (\$500-\$800/week)	3
\$41,600-\$62,999 (\$800-\$1200/week)	4
\$62,400-\$88,399 (\$1200-\$1700/week)	5
\$88,400-\$129,999 (\$1700-\$2500/week)	6
\$130,000-\$181,999 (\$2500-\$3500/week)	7
\$182,000 and over (\$3000+/week)	8
prefer not to say	9

Choice set questions, for question s1-s48 For i=1 to 48

Si_1 =Off if option 1 is not selected Si_1 = On if option 1 is selected

Si_2= Off if option 2 is not selected Si_2=On if option 2 is selected.

q36 Did you find it difficult to make choices between the 2 options?

Very Difficult	1
	2
	3
	4
	5
	6
Not Difficult	7

q37 Did you ignore any of the elements when you made your choices? Select all that apply.

Penguin population	1
Dolphin population	2
Seagrass area	3
Seahorse/sea dragon/pipefish species present	4
Area of artificial reef added	5
Increased cost	6
I did not ignore any elements	7

q38 How likely do you think the results of this survey will influence the decisions about managing the environmental impacts of the port?

Very Unlikely	1
	2
	3
	4
	5
	6
Not Likely	7

I would prefer there to be no port development in Cockburn Sound	1
I would prefer the port development in Cockburn Sound to proceed	2
I am unsure	3

q40 We have noticed that you often selected the option with the lowest cost to you, in all choices. Please select the statement that is most relevant to you:

Considering the levels of all the environmental attributes and the cost, these were best.	5
I would prefer not to have to make these choices, and so selected the cheapest one.	6
Currently, I have little money to spare, and that was the most important thing when making my choices.	
Other	8

		Strongly disagree 1 Disagree 2 Unsure 3 Agree 4 Strongly agree 5
q41_1	The people of Western Australia can economically benefit from the development of The Port.	
q41_2	Without the development of The Port, the people of Western Australia will not be able to achieve their most important goals.	
q41_3	Westport can be relied on to do what they say they will do in the media.	
q41_4	I am very satisfied with the process by which Westport is developing The Port.	
q41_5	The development and operation of The Port will be a benefit to the Western Australian population.	
q41_6	Westport listens to the Western Australian population's concerns about The Port's development and operation.	
q41_7	In the long-term, the development of The Port will make a positive contribution to the well-being of the people of Western Australia.	

Strongly disagree 1 Disagree 2 Unsure 3 Agree 4 Strongly agree 5 q42 1 Westport treats everyone fairly. q42_2 Westport respects the Western Australian way of doing things. The Western Australian population and Westport have a similar vision for the future q42_3 of Western Australia. Westport will give support to those who will be negatively impacted by the Port q42_4 Development. Westport provides opportunities for the Western Australian population to have input q42_5 into decision making. q42_6 Westport takes into account the interests of the Western Australian population. q42 7 Westport is concerned about the wellbeing of the Western Australian population.

q43 Which of the following household descriptions best fits you?

Single without children	1
Single with children – at least some of the children are still dependent	2
Single with children – with all children having left home	3
Couple without children	4
Couple with children – at least some of the children are still dependent	5
Couple with children – with all children having left home	
Other	7

Westport openly shares information that is relevant to the Western Australian

population.

Q43_7_text OE if q43==7

q42 8

q44 What is your highest level of education?

Primary / some secondary school	1
Year 12	2
Trade or technical certificate	3
Undergraduate university degree	4
Postgraduate university degree	5
prefer not to say	6

q46 Do you anticipate a reduction in your individual income over the next 12 months?

yes	1
No	2
Don't know	3

q47 Do you identify as Aboriginal Australian or Torres Strait Islander?

Yes, Aboriginal Australian	1
Yes, Torres Strait Islander	2
Yes, Aboriginal Australian and Torres Strait Islander	3
No	4

q48 Would you describe yourself as a regular recreational fisher (i.e. fish more than once a month)?

Yes	1
No	2

q49 Are you a member of an environmental group (either local, or national such as WWF)

Yes	1
No	2

q50 Before this survey, had you heard of the proposed port development in Cockburn Sound?

Yes	1
No	2

q51 Before this survey, had you heard of the "Westport" organisation?

Yes	1
No	2

 $\ensuremath{\mathsf{q52}}$. If you have any further comments you would like to make, please leave them in the box below. OE

Generated variables

```
time=Duration__in_seconds_/60
```

inc

income level weekly

inc=200 if q45==1

inc=375 if q45==2

inc=650 if q45==3

inc=1000 if q45==4

inc=1450 if q45==5

inc=2100 if q45==6

inc=3000 if q45==7

inc=3500 if q45==8

inca=inc*52/100000

age

age in years

age=23.5 if q4==2

age=35 if q4==4

age=45 if q4==6

age=55 if q4==8

age=65 if q4==10

age=75 if q4==12

age=85 if q4==15

visit

level of visitation to CS

visit=0 if q6==8

visit=1 if q6==7

visit=4 if q6==6

visit=12 if q6==5

visit=26 if q6==4

visit=52 if q6==3

visit=100 if q6==2

visit=365 if q6==1

Appendix 6 Summary tables of all survey responses

Summary tables of all survey questions, identified by question number and with text labels

Excludes choice sets

Westport summary report

Tabulation of q4 Distribution of ages

Which age group applies to you?	Freq.	Percent	Cum.
18-29 years	225	16.79	16.79
30-39 years	286	21.34	38.13
40-49 years	237	17.69	55.82
50-59 years	232	17.31	73.13
60-69 years	195	14.55	87.69
70-79 years	135	10.07	97.76
80 years and over	30	2.24	100.00
Total	1340	100.00	

Tabulation of q3 Distribution of gender

What is your gender?	Freq.	Percent	Cum.
Male	607	45.30	45.30
Female	729	54.40	99.70
Other/non-binary	3	0.22	99.93
Prefer not to say	1	0.07	100.00
Total	1340	100.00	

Tabulation of q6

1 usulution of qo			
Please indicate how often you have visited the Cockburn	Freq.	Percent	Cum.
Sound area in the last 5 years			
Every day	23	1.72	1.72
A few times a week	56	4.18	5.90
About once a week	64	4.78	10.67
About once a fortnight	63	4.70	15.37
About once a month	126	9.40	24.78
A few times a year	399	29.78	54.55
Less than once a year	307	22.91	77.46
I have not visited Cockburn Sound in the last 5 years	302	22.54	100.00
Total	1340	100.00	

count

Please indicate what sorts of activities you have undertaken in Cockburn Sound during any visits to this location in the last 5 years. Select all relevant options.

during any visits to this location in the last 3 years. Select an relevant options.	
beach activities	659
birdwatching	65
camping/caravan	59
community volunteering	17
cycling	110
dog beach activities	163
free diving	53
fishing	217
horse exercising	12
horseback riding	14
hydrofoiling	6
hoverboarding	1
jet-skiing	21
kayaking	42
kite boarding	9
kite surfing	10
motor boating	38
picnicking	320
sailing	23
school/community camps	24
scuba diving	15
swimming	378
snorkelling	107
SUP boarding	30
visiting family and/or friends	286
walking/running	
wakeboarding	7
water skiing	13
windsurfing	6
work	77

Tabulation of q7_31_text

Please indicate what sorts of activities you have undertaken in	Freq.	Percent	Cum.
Cockburn Sound d			
Appointment	1	1.39	1.39
Boat trip to penguin island	1	1.39	2.78
Browsing nearby shops d boat area	1	1.39	4.17
Dining	2	2.78	6.94
Dining and shopping	1	1.39	8.33
Dolphin Tour	1	1.39	9.72
Driving the scenic drive for the scenery	1	1.39	11.11
Driving through	1	1.39	12.50
Drove through	1	1.39	13.89
Family	1	1.39	15.28
Food	1	1.39	16.67
Helping someone move	1	1.39	18.06
Holiday	1	1.39	19.44
Hospital	1	1.39	20.83
Just travelling through	1	1.39	22.22

12'1 1' .1 1	1	1.20	22.61
Kids birthday	1	1.39	23.61
Navy open day	1	1.39	25.00
Operating food caravan	1	1.39	26.39
Passing by	1	1.39	27.78
Penguin Island	1	1.39	29.17
Racing	1	1.39	30.56
Relaxing	1	1.39	31.94
Restaurants	1	1.39	33.33
Scenic Drive	1	1.39	34.72
Shopping	2	2.78	37.50
Shopping center	1	1.39	38.89
Sight seeing	2	2.78	41.67
Sightseeing	4	5.56	47.22
Sightseeing with interstate visitor	1	1.39	48.61
Sitting along the beach	1	1.39	50.00
Staying at the shacks	1	1.39	51.39
Visit Garden Island Navy Base	1	1.39	52.78
Visit friends	1	1.39	54.17
Visit naval base	1	1.39	55.56
Visited	1	1.39	56.94
Visiting an area I once visited as a 9 year old	1	1.39	58.33
Visiting friends	1	1.39	59.72
Visiting friends home	1	1.39	61.11
W	1	1.39	62.50
We take a drive past to watch the horses and stop at the park	1	1.39	63.89
Whale Watching	1	1.39	65.28
birthday parties grand children	1	1.39	66.67
buying boating gear	1	1.39	68.06
cafe	1	1.39	69.44
cafe visits	1	1.39	70.83
dining	1	1.39	72.22
dolphin and seal watching	1	1.39	73.61
food outlets	1	1.39	75.00
i live in the area	1	1.39	76.39
ice skating	1	1.39	77.78
lawn bowls	1	1.39	79.17
market	1	1.39	80.56
none	2	2.78	83.33
not visited	1	1.39	84.72
remembering when i was younger 9/10years	1	1.39	86.11
restaurant	1	1.39	87.50
shoping	1	1.39	88.89
shopping	2	2.78	91.67
sightseeing	1	1.39	93.06
socialising	1	1.39	94.44
visitation	1	1.39	95.83
visiting rockingham	1	1.39	97.22
visting family	1	1.39	98.61
wedding photos	1	1.39	100.00
Total	72	100.00	100.00
1000	14	100.00	

Tabulation of q9_1 Penguins contribute to my enjoyment of the Cockburn Sound marine environment

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	22	1.64	1.64
Disagree	29	2.16	3.81
Unsure	183	13.66	17.46
Agree	554	41.34	58.81
Strongly Agree	552	41.19	100.00
Total	1340	100.00	

Tabulation of q9_2 Penguins are an important part of the history and cultural heritage of the area.

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	9	0.67	0.67
Disagree	3	0.22	0.90
Unsure	89	6.64	7.54
Agree	496	37.01	44.55
Strongly Agree	743	55.45	100.00
Total	1340	100.00	_

Tabulation of q9_3 Penguins are important for scientific research and education

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	9	0.67	0.67
Disagree	10	0.75	1.42
Unsure	135	10.07	11.49
Agree	547	40.82	52.31
Strongly Agree	639	47.69	100.00
Total	1340	100.00	_

Tabulation of q9_4 I could see myself having a meaningful occupation due partly to penguins existing in the area

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	132	9.85	9.85
Disagree	305	22.76	32.61
Unsure	464	34.63	67.24
Agree	286	21.34	88.58
Strongly Agree	153	11.42	100.00
Total	1340	100.00	

Tabulation of q9_5 Penguins are important for my recreation in the area.

Tabulation of 47_5 Tenganis are important i	Tabalation of q5_5 Tenganis are important for my recreation in the area.				
Please select your level of agreement or	Freq.	Percent	Cum.		
disagreement with each statement listed					
Strongly Disagree	34	2.54	2.54		
Disagree	81	6.04	8.58		
Unsure	261	19.48	28.06		
Agree	642	47.91	75.97		
Strongly Agree	322	24.03	100.00		
Total	1340	100.00			

Tabulation of q9_6 Penguins contribute to my strengthening of social bonds

1 - 0	, ,		
Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed	_		
Strongly Disagree	71	5.30	5.30
Disagree	217	16.19	21.49
Unsure	520	38.81	60.30
Agree	357	26.64	86.94
Strongly Agree	175	13.06	100.00
Total	1340	100.00	

Tabulation of q9_7 I personally value penguins' role in the local ecology

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	10	0.75	0.75
Disagree	24	1.79	2.54
Unsure	115	8.58	11.12
Agree	655	48.88	60.00
Strongly Agree	536	40.00	100.00
Total	1340	100.00	•

Tabulation of q9_8 Penguins are important in their own right

D1 1 1 1 C		D .	
Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	5	0.37	0.37
Disagree	8	0.60	0.97
Unsure	46	3.43	4.40
Agree	527	39.33	43.73
Strongly Agree	754	56.27	100.00
Total	1340	100.00	

Tabulation of q9_9 It is important that the penguins are currently around for other people to enjoy or benefit from

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	17	1.27	1.27
Disagree	49	3.66	4.93
Unsure	146	10.90	15.82
Agree	523	39.03	54.85
Strongly Agree	605	45.15	100.00
Total	1340	100.00	_

Tabulation of q9_10 It is important to ensure the penguins are still around for future generations

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	5	0.37	0.37
Disagree	8	0.60	0.97
Unsure	33	2.46	3.43
Agree	393	29.33	32.76
Strongly Agree	901	67.24	100.00
Total	1340	100.00	

Tabulation of q9_11 I care about maintaining the population of penguins in Cockburn Sound

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	5	0.37	0.37
Disagree	6	0.45	0.82
Unsure	83	6.19	7.01
Agree	451	33.66	40.67
Strongly Agree	795	59.33	100.00
Total	1340	100.00	_

Tabulation of q12_1 Dolphins contribute to my enjoyment of the Cockburn Sound marine environment

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	13	0.97	0.97
Disagree	28	2.09	3.06
Unsure	109	8.13	11.19
Agree	535	39.93	51.12
Strongly Agree	655	48.88	100.00
Total	1340	100.00	

Tabulation of q12_2 Dolphins are an important part of the history and cultural heritage of the area.

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed	1		
Strongly Disagree	4	0.30	0.30
Disagree	6	0.45	0.75
Unsure	78	5.82	6.57
Agree	512	38.21	44.78
Strongly Agree	740	55.22	100.00
Total	1340	100.00	

Tabulation of q12_3 Dolphins are important for scientific research and education

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	4	0.30	0.30
Disagree	11	0.82	1.12
Unsure	92	6.87	7.99
Agree	525	39.18	47.16
Strongly Agree	708	52.84	100.00
Total	1340	100.00	

Tabulation of q12_4 I could see myself having a meaningful occupation due partly to dolphins existing in the area

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	125	9.33	9.33
Disagree	246	18.36	27.69
Unsure	411	30.67	58.36
Agree	314	23.43	81.79
Strongly Agree	244	18.21	100.00
Total	1340	100.00	_

Tabulation of q12_5 Dolphins are important for my recreation in the area.

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	19	1.42	1.42
Disagree	46	3.43	4.85
Unsure	131	9.78	14.63
Agree	607	45.30	59.93
Strongly Agree	537	40.07	100.00
Total	1340	100.00	•

Tabulation of q12_6 I personally value dolphins' role in the local ecology

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	8	0.60	0.60
Disagree	13	0.97	1.57
Unsure	62	4.63	6.19
Agree	515	38.43	44.63
Strongly Agree	742	55.37	100.00
Total	1340	100.00	_

Tabulation of q12_7 Dolphins are important in their own right

iii tiicii Owii iigiit		
Freq.	Percent	Cum.
2	0.15	0.15
4	0.30	0.45
37	2.76	3.21
440	32.84	36.04
857	63.96	100.00
1340	100.00	•
	Freq. 2 4 37 440 857	Freq. Percent 2 0.15 4 0.30 37 2.76 440 32.84 857 63.96

Tabulation of q12_8 It is important that the dolphins are currently around for other people to enjoy or benefit from

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	9	0.67	0.67
Disagree	41	3.06	3.73
Unsure	103	7.69	11.42
Agree	449	33.51	44.93
Strongly Agree	738	55.07	100.00
Total	1340	100.00	

Tabulation of q12_9 It is important to ensure the dolphins are still around for future generations

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	2	0.15	0.15
Disagree	6	0.45	0.60
Unsure	30	2.24	2.84
Agree	359	26.79	29.63
Strongly Agree	943	70.37	100.00
Total	1340	100.00	

Tabulation of q12_10 I care about maintaining the population of dolphins in Cockburn Sound

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed			
Strongly Disagree	3	0.22	0.22
Disagree	6	0.45	0.67
Unsure	69	5.15	5.82
Agree	471	35.15	40.97
Strongly Agree	791	59.03	100.00
Total	1340	100.00	

Tabulation of q12_12 Dolphins contribute to my strengthening of social bonds

Please select your level of agreement or	Freq.	Percent	Cum.
disagreement with each statement listed	•		
Strongly Disagree	37	2.76	2.76
Disagree	155	11.57	14.33
Unsure	360	26.87	41.19
Agree	429	32.01	73.21
Strongly Agree	359	26.79	100.00
Total	1340	100.00	

Tabulation of q15_1 Seagrass contribute to my enjoyment of the Cockburn Sound marine environment

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each	•		
statement l			
Strongly Disagree	37	2.76	2.76
Disagree	173	12.91	15.67
Unsure	382	28.51	44.18
Agree	453	33.81	77.99
Strongly Agree	295	22.01	100.00
Total	1340	100.00	

Tabulation of q15_2 Seagrass are an important part of the history and cultural heritage of the area.

1 - 0 1	1		,
Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	7	0.52	0.52
Disagree	46	3.43	3.96
Unsure	259	19.33	23.28
Agree	543	40.52	63.81
Strongly Agree	485	36.19	100.00
Total	1340	100.00	

Tabulation of q15_3 Seagrass are important for scientific research and education

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	3	0.22	0.22
Disagree	12	0.90	1.12
Unsure	157	11.72	12.84
Agree	579	43.21	56.04
Strongly Agree	589	43.96	100.00
Total	1340	100.00	

Tabulation of q15_4 Seagrass are important for my recreation in the area.

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	43	3.21	3.21
Disagree	238	17.76	20.97
Unsure	387	28.88	49.85
Agree	432	32.24	82.09
Strongly Agree	240	17.91	100.00
Total	1340	100.00	

Tabulation of q15_5 Seagrass contribute to my strengthening of social bonds

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	89	6.64	6.64
Disagree	311	23.21	29.85
Unsure	467	34.85	64.70
Agree	293	21.87	86.57
Strongly Agree	180	13.43	100.00
Total	1340	100.00	

Tabulation of q15_6 Seagrass contributes to my enjoyment of a pleasant and healthy environment by improving water quality

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	31	2.31	2.31
Disagree	83	6.19	8.51
Unsure	228	17.01	25.52
Agree	554	41.34	66.87
Strongly Agree	444	33.13	100.00
Total	1340	100.00	

Tabulation of q15_7 I personally value seagrass' role in the local ecology

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	14	1.04	1.04
Disagree	30	2.24	3.28
Unsure	167	12.46	15.75
Agree	568	42.39	58.13
Strongly Agree	561	41.87	100.00
Total	1340	100.00	

Tabulation of q15_8 seagrass are important in their own right

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each	_		
statement 1			
Strongly Disagree	4	0.30	0.30
Disagree	8	0.60	0.90
Unsure	129	9.63	10.52
Agree	520	38.81	49.33
Strongly Agree	679	50.67	100.00
Total	1340	100.00	

Tabulation of q15_9 I could see myself having a meaningful occupation due partly to seagrass existing in the area

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	168	12.54	12.54
Disagree	358	26.72	39.25
Unsure	430	32.09	71.34
Agree	234	17.46	88.81
Strongly Agree	150	11.19	100.00
Total	1340	100.00	

Tabulation of q15_10 It is important that the seagrass are currently around for other people to enjoy or benefit from

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	14	1.04	1.04
Disagree	48	3.58	4.63
Unsure	227	16.94	21.57
Agree	557	41.57	63.13
Strongly Agree	494	36.87	100.00
Total	1340	100.00	

Tabulation of q15_11 It is important to ensure the seagrass are still around for future generations

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	6	0.45	0.45
Disagree	17	1.27	1.72
Unsure	127	9.48	11.19
Agree	486	36.27	47.46
Strongly Agree	704	52.54	100.00
Total	1340	100.00	•

Tabulation of q15_12 I care about maintaining the population of seagrass in Cockburn Sound

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	10	0.75	0.75
Disagree	16	1.19	1.94
Unsure	164	12.24	14.18
Agree	556	41.49	55.67
Strongly Agree	594	44.33	100.00
Total	1340	100.00	

Tabulation of q21_1 seahorses contribute to my enjoyment of the Cockburn Sound marine environment

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each	_		
statement l			
Strongly Disagree	28	2.09	2.09
Disagree	100	7.46	9.55
Unsure	271	20.22	29.78
Agree	527	39.33	69.10
Strongly Agree	414	30.90	100.00
Total	1340	100.00	

Tabulation of q21_2 seahorses are an important part of the history and cultural heritage of the area.

- 110 0-110-0-1 0- 1		-)	
Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	5	0.37	0.37
Disagree	20	1.49	1.87
Unsure	160	11.94	13.81
Agree	566	42.24	56.04
Strongly Agree	589	43.96	100.00
Total	1340	100.00	

Tabulation of q21_3 Seahorses are important for scientific research and education

<u> </u>			
Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	3	0.22	0.22
Disagree	9	0.67	0.90
Unsure	116	8.66	9.55
Agree	566	42.24	51.79
Strongly Agree	646	48.21	100.00
Total	1340	100.00	

Tabulation of q21_4 Seahorses are important for my recreation in the area.

1 — 1	,		
Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement 1			
Strongly Disagree	26	1.94	1.94
Disagree	104	7.76	9.70
Unsure	280	20.90	30.60
Agree	529	39.48	70.07
Strongly Agree	401	29.93	100.00
Total	1340	100.00	

Tabulation of q21_5 I could see myself having a meaningful occupation

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement 1			
Strongly Disagree	145	10.82	10.82
Disagree	266	19.85	30.67
Unsure	454	33.88	64.55
Agree	288	21.49	86.04
Strongly Agree	187	13.96	100.00
Total	1340	100.00	

Tabulation of q21_6 I personally value Seahorses' role in the local ecology

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	7	0.52	0.52
Disagree	19	1.42	1.94
Unsure	140	10.45	12.39
Agree	583	43.51	55.90
Strongly Agree	591	44.10	100.00
Total	1340	100.00	

Tabulation of q21_7 Seahorses are important in their own right

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each	1		
statement 1			
Strongly Disagree	4	0.30	0.30
Disagree	5	0.37	0.67
Unsure	80	5.97	6.64
Agree	498	37.16	43.81
Strongly Agree	753	56.19	100.00
Total	1340	100.00	

Tabulation of q21_8 It is important that the Seahorses are currently around for other people to enjoy or benefit from

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	9	0.67	0.67
Disagree	28	2.09	2.76
Unsure	135	10.07	12.84
Agree	518	38.66	51.49
Strongly Agree	650	48.51	100.00
Total	1340	100.00	

Tabulation of q21_9 It is important to ensure the seahorses are still around for future generations

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	3	0.22	0.22
Disagree	4	0.30	0.52
Unsure	71	5.30	5.82
Agree	440	32.84	38.66
Strongly Agree	822	61.34	100.00
Total	1340	100.00	•

Tabulation of q21_10 Seahorses contribute to my strengthening of social bonds

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	49	3.66	3.66
Disagree	176	13.13	16.79
Unsure	336	25.07	41.87
Agree	419	31.27	73.13
Strongly Agree	360	26.87	100.00
Total	1340	100.00	•

Tabulation of q21_11 I care about maintaining the population of seahorses in Cockburn Sound

<u> </u>	0 1 1		
Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement 1			
Strongly Disagree	4	0.30	0.30
Disagree	4	0.30	0.60
Unsure	113	8.43	9.03
Agree	503	37.54	46.57
Strongly Agree	716	53.43	100.00
Total	1340	100.00	

Tabulation of q18_1 I enjoy and/or rely on eating Cockburn Sound fish for food

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	118	8.81	8.81
Disagree	248	18.51	27.31
Unsure	195	14.55	41.87
Agree	438	32.69	74.55
Strongly Agree	341	25.45	100.00
Total	1340	100.00	

Tabulation of q18_2 Fish contribute to my enjoyment of the Cockburn Sound marine environment

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement 1			
Strongly Disagree	26	1.94	1.94
Disagree	65	4.85	6.79
Unsure	163	12.16	18.96
Agree	561	41.87	60.82
Strongly Agree	525	39.18	100.00
Total	1340	100.00	

Tabulation of al8 3 Fish are an important part of the history and cultural heritage of the area.

Tabulation of 416_3 Tish are all important part of the history and cultural heritage of the area.			
Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	3	0.22	0.22
Disagree	12	0.90	1.12
Unsure	102	7.61	8.73
Agree	499	37.24	45.97
Strongly Agree	724	54.03	100.00
Total	1340	100.00	

Tabulation of q18_4 Fish are important for scientific research and education

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	2	0.15	0.15
Disagree	4	0.30	0.45
Unsure	86	6.42	6.87
Agree	512	38.21	45.07
Strongly Agree	736	54.93	100.00
Total	1340	100.00	

Tabulation of q18_5 I could see myself having a meaningful occupation due partly to fish existing in the area

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	144	10.75	10.75
Disagree	282	21.04	31.79
Unsure	409	30.52	62.31
Agree	269	20.07	82.39
Strongly Agree	236	17.61	100.00
Total	1340	100.00	

Tabulation of q18_6 Fish are important for my recreation in the area.

NT 1 1 1 C	-	D .	
Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	41	3.06	3.06
Disagree	133	9.93	12.99
Unsure	186	13.88	26.87
Agree	507	37.84	64.70
Strongly Agree	473	35.30	100.00
Total	1340	100.00	•

Tabulation of q18_7 Fish contribute to my strengthening of social bonds

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each	_		
statement 1			
Strongly Disagree	56	4.18	4.18
Disagree	178	13.28	17.46
Unsure	234	17.46	34.93
Agree	470	35.07	70.00
Strongly Agree	402	30.00	100.00
Total	1340	100.00	

Tabulation of q18_8 I personally value fish' role in the local ecology

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	5	0.37	0.37
Disagree	16	1.19	1.57
Unsure	71	5.30	6.87
Agree	489	36.49	43.36
Strongly Agree	759	56.64	100.00
Total	1340	100.00	

Tabulation of q18_9 Fish are important in their own right

1 -	0		
Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	2	0.15	0.15
Disagree	5	0.37	0.52
Unsure	50	3.73	4.25
Agree	451	33.66	37.91
Strongly Agree	832	62.09	100.00
Total	1340	100.00	

Tabulation of q18_10 It is important that the fish are currently around for other people to enjoy or benefit from

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement l			
Strongly Disagree	7	0.52	0.52
Disagree	13	0.97	1.49
Unsure	82	6.12	7.61
Agree	463	34.55	42.16
Strongly Agree	775	57.84	100.00
Total	1340	100.00	

Tabulation of q18_11 It is important to ensure the fish are still around for future generations

			0
Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with			
each statement l			
Disagree	7	0.52	0.52
Unsure	41	3.06	3.58
Agree	372	27.76	31.34
Strongly Agree	920	68.66	100.00
Total	1340	100.00	

Tabulation of q18_12 I care about maintaining the population of fish in Cockburn Sound

Now, please select your level of	Freq.	Percent	Cum.
agreement or disagreement with each			
statement 1			
Strongly Disagree	2	0.15	0.15
Disagree	5	0.37	0.52
Unsure	65	4.85	5.37
Agree	475	35.45	40.82
Strongly Agree	793	59.18	100.00
Total	1340	100.00	

Tabulation of q25 Have you ever seen Little Penguins in the water along the Perth coast?

1 7 8	O		
Have you ever seen Little Penguins along the Perth coastal	Freq.	Percent	Cum.
region?			
Yes, I have seen them	592	44.18	44.18
No, I have never seen them	670	50.00	94.18
Unsure	78	5.82	100.00
Total	1340	100.00	

Tabulation of q27 Have you ever seen dolphins in the water along the Perth coast?

- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			
Have you ever seen dolphins in the water along the Perth coast	Freq.	Percent	Cum.
region?			
Yes, I have seen them	1070	79.85	79.85
No, I have never seen them	236	17.61	97.46
Unsure	34	2.54	100.00
Total	1340	100.00	

Tabulation of q29 Have you ever been involved in seagrass conservation or restoration in any way?

Have you ever been involved in	Freq.	Percent	Cum.
seagrass conservation or			
restoration in any way?			
Yes, I have	273	20.37	20.37
No, I have not	993	74.10	94.48
Unsure	74	5.52	100.00
Total	1340	100.00	

Tabulation of q31 Have you ever seen seahorses, seadragon or pipefish

Have you ever seen a seahorse, sea dragon or pipefish along	Freq.	Percent	Cum.
the beach, coast or			
Yes, I have seen them	282	21.04	21.04
No, I have never seen them	993	74.10	95.15
Unsure	65	4.85	100.00
Total	1340	100.00	

Tabulation of q33 Have you heard about people creating artificial reefs along the coast of WA?

Have you heard about people creating artificial reefs along the	Freq.	Percent	Cum.
coast of WA?	1		
Yes	826	61.64	61.64
No	401	29.93	91.57
Unsure	113	8.43	100.00
Total	1340	100.00	

Tabulation of q44 Income levels

What is your highest level of education?	Freq.	Percent	Cum.
Primary / some secondary school	133	9.95	9.95
Year 12	264	19.75	29.69
Trade or technical certificate	369	27.60	57.29
Undergraduate university degree	352	26.33	83.62
Postgraduate university degree	178	13.31	96.93
prefer not to say	41	3.07	100.00
Total	1337	100.00	•

Tabulation of q36_1 Did you find it difficult to make choices between the 2 options?

Did you find it difficult to make choices between the 2 options?	Freq.	Percent	Cum.
Very Difficult 1	133	9.93	9.93
2	140	10.45	20.37
3	250	18.66	39.03
4	315	23.51	62.54
5	229	17.09	79.63
6	124	9.25	88.88
Not Difficult 7	149	11.12	100.00
Total	1340	100.00	•

Tabulation of q37_1 Did you ignore any of the elements when you made your choices? (count)

Did you ignore any of the elements when you made your	Freq.	Percent	Cum.
choices? Select all that apply			
Penguin population	71	100.00	100.00
Total	71	100.00	

Tabulation of q37_2

Did you ignore any of the elements when you made your	Freq.	Percent	Cum.
choices? Select all that apply			
Dolphin population	76	100.00	100.00
Total	76	100.00	

Tabulation of q37_3

Did you ignore any of the elements when you made your	Freq.	Percent	Cum.
choices? Select all that apply			
Seagrass area	171	100.00	100.00
Total	171	100.00	_

Tabulation of q37_4

Did you ignore any of the elements when you made your	Freq.	Percent	Cum.
choices? Select all that apply			
Seahorse/sea dragon/pipefish species present	90	100.00	100.00
Total	90	100.00	

Tabulation of q37_5

Did you ignore any of the elements when you made your	Freq.	Percent	Cum.
choices? Select all that apply			
Area of artificial reef added	237	100.00	100.00
Total	237	100.00	

Tabulation of q37_6

1 40 th 1 40 1 _0			
Did you ignore any of the elements when you made your	Freq.	Percent	Cum.
choices? Select all that apply			
Increased cost	240	100.00	100.00
Total	240	100.00	

Tabulation of q37_7

Did you ignore any of the elements when you made your choices? Select all that apply	Freq.	Percent	Cum.
I did not ignore any elements	811	100.00	100.00
Total	811	100.00	

Tabulation of q38_1 How likely do you think the results of this survey will influence the decisions about managing the environmental impacts of the port?

How likely do you think the results of this survey will	Freq.	Percent	Cum.
influence the decisions			
Very Unlikely 1	141	10.52	10.52
2	128	9.55	20.07
3	204	15.22	35.30
4	391	29.18	64.48
5	275	20.52	85.00
6	112	8.36	93.36
Very likely 7	89	6.64	100.00
Total	1340	100.00	

Tabulation of q39

Currently our container traffic goes through Fremantle Port.	Freq.	Percent	Cum.
Would you prefer f			
I would prefer there to be no port development in Cockburn	600	44.78	44.78
Sound			
I would prefer the port development in Cockburn Sound to	289	21.57	66.34
proceed			
I am unsure	451	33.66	100.00
Total	1340	100.00	_

19

Tabulation of q40 Reasons for selecting lowest cost (count)

We have noticed that you often selected the option with the	Freq.	Percent	Cum.
lowest cost to you,			
Considering the levels of all the environmental attributes and	75	22.73	22.73
the cost, these were best.			
I would prefer not to have to make these choices, and so	44	13.33	36.06
selected the cheapest one.			
Currently, I have little money to spare, and that was the most	183	55.45	91.52
important thing when making my choices.			
Other	28	8.48	100.00
Total	330	100.00	

Tabulation of q41_1 The people of Western Australia can economically benefit from the development of The Port

Your views on the way the Cockburn port proposal has been	Freq.	Percent	Cum.
developed In the f			
Strongly disagree	29	2.16	2.16
Disagree	90	6.72	8.88
Neither agree nor disagree	479	35.75	44.63
Agree	622	46.42	91.04
Strongly agree	120	8.96	100.00
Total	1340	100.00	

Tabulation of q41_2 Without the development of The Port, the people of Western Australia will not be able to achieve their most important goals.

Your views on the way the Cockburn port proposal has been	Freq.	Percent	Cum.
developed In the f	•		
Strongly disagree	91	6.79	6.79
Disagree	359	26.79	33.58
Neither agree nor disagree	585	43.66	77.24
Agree	247	18.43	95.67
Strongly agree	58	4.33	100.00
Total	1340	100.00	

Tabulation of q41_3 Westport can be relied on to do what they say they will do in the media

Your views on the way the Cockburn port proposal has been	Freq.	Percent	Cum.
developed In the f			
Strongly disagree	129	9.63	9.63
Disagree	315	23.51	33.13
Neither agree nor disagree	655	48.88	82.01
Agree	201	15.00	97.01
Strongly agree	40	2.99	100.00
Total	1340	100.00	

Tabulation of q41_4 I am very satisfied with the process by which Westport is developing The Port

Your views on the way the Cockburn port proposal has been	Freq.	Percent	Cum.
developed In the f	-		
Strongly disagree	70	5.22	5.22
Disagree	218	16.27	21.49
Neither agree nor disagree	835	62.31	83.81
Agree	172	12.84	96.64
Strongly agree	45	3.36	100.00
Total	1340	100.00	

Tabulation of q41_5 The development and operation of The Port will be a benefit to the Western Australian population.

Voya views on the way the Coalsham neut numeral has been	Freq.	Percent	Cram
Your views on the way the Cockburn port proposal has been	rreq.	Percent	Cum.
developed In the f			
Strongly disagree	46	3.43	3.43
Disagree	136	10.15	13.58
Neither agree nor disagree	511	38.13	51.72
Agree	532	39.70	91.42
Strongly agree	115	8.58	100.00
Total	1340	100.00	

Tabulation of q41_6 Westport listens to the Western Australian population's concerns about The Port's development and operation

T		
rreq.	Percent	Cum.
•		
109	8.13	8.13
307	22.91	31.04
653	48.73	79.78
230	17.16	96.94
41	3.06	100.00
1340	100.00	
	307 653 230 41	109 8.13 307 22.91 653 48.73 230 17.16 41 3.06

Tabulation of q41_7 In the long-term, the development of The Port will make a positive contribution to the well-being of the people of Western Australia

Your views on the way the Cockburn port proposal has been	Freq.	Percent	Cum.
developed In the f			
Strongly disagree	54	4.03	4.03
Disagree	159	11.87	15.90
Neither agree nor disagree	549	40.97	56.87
Agree	454	33.88	90.75
Strongly agree	124	9.25	100.00
Total	1340	100.00	

Tabulation of q42_1 Westport treats everyone fairly.

	Freq.	Percent	Cum.
Strongly disagree	68	5.07	5.07
Disagree	247	18.43	23.51
Neither agree nor disagree	795	59.33	82.84
Agree	189	14.10	96.94
Strongly agree	41	3.06	100.00
Total	1340	100.00	

Tabulation of q42_2 Westport respects the Western Australian way of doing things.

	Freq.	Percent	Cum.
Strongly disagree	74	5.52	5.52
Disagree	213	15.90	21.42
Neither agree nor disagree	719	53.66	75.07
Agree	291	21.72	96.79
Strongly agree	43	3.21	100.00
Total	1340	100.00	

Tabulation of q42_3 The Western Australian population and Westport have a similar vision for the future of Western Australia.

	Freq.	Percent	Cum.
Strongly disagree	71	5.30	5.30
Disagree	275	20.52	25.82
Neither agree nor disagree	690	51.49	77.31
Agree	254	18.96	96.27
Strongly agree	50	3.73	100.00
Total	1340	100.00	

Tabulation of q42_4 Westport will give support to those who will be negatively impacted by the Port Development.

	Freq.	Percent	Cum.
Strongly disagree	85	6.34	6.34
Disagree	283	21.12	27.46
Neither agree nor disagree	695	51.87	79.33
Agree	244	18.21	97.54
Strongly agree	33	2.46	100.00
Total	1340	100.00	_

Tabulation of q42_5 Westport provides opportunities for the Western Australian population to have input into decision making.

	Freq.	Percent	Cum.
Strongly disagree	66	4.93	4.93
Disagree	224	16.72	21.64
Neither agree nor disagree	622	46.42	68.06
Agree	375	27.99	96.04
Strongly agree	53	3.96	100.00
Total	1340	100.00	

Tabulation of q42_6 Westport takes into account the interests of the Western Australian population.

	Freq.	Percent	Cum.
Strongly disagree	76	5.67	5.67
Disagree	243	18.13	23.81
Neither agree nor disagree	631	47.09	70.90
Agree	335	25.00	95.90
Strongly agree	55	4.10	100.00
Total	1340	100.00	

Tabulation of q42_7 Westport is concerned about the wellbeing of the Western Australian population

	Freq.	Percent	Cum.
Strongly disagree	80	5.97	5.97
Disagree	278	20.75	26.72
Neither agree nor disagree	623	46.49	73.21
Agree	307	22.91	96.12
Strongly agree	52	3.88	100.00
Total	1340	100.00	

Tabulation of q42_8 Westport openly shares information that is relevant to the Western Australian population.

	Freq.	Percent	Cum.
Strongly disagree	75	5.60	5.60
Disagree	241	17.99	23.58
Neither agree nor disagree	701	52.31	75.90
Agree	274	20.45	96.34
Strongly agree	49	3.66	100.00
Total	1340	100.00	

Tabulation of q43 A little more about you ...Which of the following household descriptions best describes you

· · · · · · · · · · · · · · · · · · ·	Freq.	Percent	Cum.
Single without children	260	19.40	19.40
Single with children â€" at least some of the children are still	90	6.72	26.12
dependent			
Single with children â€" with all children having left home	91	6.79	32.91
Couple without children	212	15.82	48.73
Couple with children â€" at least some of the children are still	413	30.82	79.55
dependent			
Couple with children â€" with all children having left home	228	17.01	96.57
Other	46	3.43	100.00
Total	1340	100.00	

Tabulation of q44 What is your highest level of education?

	Freq.	Percent	Cum.
Primary / some secondary school	133	9.95	9.95
Year 12	264	19.75	29.69
Trade or technical certificate	369	27.60	57.29
Undergraduate university degree	352	26.33	83.62
Postgraduate university degree	178	13.31	96.93
prefer not to say	41	3.07	100.00
Total	1337	100.00	•

Tabulation of q46 Do you anticipate a reduction in your individual income over the next 12 months?

	Freq.	Percent	Cum.
yes	277	20.72	20.72
No	816	61.03	81.75
Don't know	244	18.25	100.00
Total	1337	100.00	

Tabulation of q47 Do you identify as Aboriginal Australian or Torres Strait Islander?

	Freq.	Percent	Cum.
Yes, Aboriginal Australian	25	1.87	1.87
Yes, Torres Strait Islander	2	0.15	2.02
Yes, Aboriginal Australian and Torres Strait Islander	3	0.22	2.24
No	1308	97.76	100.00
Total	1338	100.00	

Tabulation of q48 Would you describe yourself as a regular recreational fisher?

	Freq.	Percent	Cum.
Yes	157	11.75	11.75
No	1179	88.25	100.00
Total	1336	100.00	

Tabulation of q49 Are you a member of an environmental group (either local, or national such as WWF)

	Freq.	Percent	Cum.
Yes	92	6.89	6.89
No	1243	93.11	100.00
Total	1335	100.00	_

Tabulation of q50 Before this survey, had you heard of the proposed port development in Cockburn Sound?

	Freq.	Percent	Cum.
Yes	540	40.36	40.36
No	798	59.64	100.00
Total	1338	100.00	

Tabulation of q51 Before this survey, had you heard of the Westport organisation?

	Freq.	Percent	Cum.
Yes	254	18.97	18.97
No	1085	81.03	100.00
Total	 1339	100.00	

Submitted as draft	6/11/2023
Review completed	29/11/2023
Submitted as revised draft	14/8/2024
Approved by Science Program Leadership Team	29/8/2024
Approved by WAMSI CEO	4/9/2024
Final report	4/9/2024

