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Executive summary 

Fish recruitment, the process of juvenile fish moving into adult populations, is a fundamental determinant of 
population size. It is often measured as the local abundance of juvenile fish, although there are often some 
locations, habitats or times of year where recruitment of fish is higher than others. Consequently, knowing when 
and where recruitment is highest identifies ecologically important times and locations which can inform 
conservation and fisheries management. As measures of recruitment are also dependent on the technique 
employed it is imperative that location and taxa appropriate methods are developed to acquire relevant 
recruitment information.    

Our research remit was to develop techniques suitable to quantifying juvenile fish recruitment in the challenging 
macro tidal conditions of the Kimberley (how); provide baseline levels of abundance and diversity across a range 
of representative Kimberley marine habitats (how many), identify the seasonal timing of fish recruitment (when); 
identify important juvenile fish nursery grounds or habitats (where) and provide advice on relevant sites as a 
basis for any future monitoring. In collaboration with the Bardi Jawi Rangers and the Kimberley Marine Research 
Station, this research was focused in the Cygnet Bay and Sunday Island group at the mouth of King Sound in the 
Western Kimberley. In total, a series of eight fish recruitment field trips were completed from March 2015 - 
March 2016.  

Our initial pilot study (March 2015) compared seven separate fish recruitment sampling techniques across six 
locations which together encompassed four different habitats; inter-tidal pools, seagrass, mangrove and coral 
reefs. Following analyses that considered sampling effort, ability to accurately quantify juvenile fish diversity and 
abundance across a range of habitats, precision and safety, unbaited stereo remote underwater video (stereo-
RUVs) was shown to be the most appropriate technique. This method is well suited to monitoring in the 
Kimberley, however, it is not commonly employed to measure fish recruitment, making it difficult to make 
comparison with other studies. During this pilot study, it also became clear that tidal current strength and habitat 
type were critically important variables structuring fish recruitment patterns. To address this, we restricted core 
sampling to neap tides or 1.5 hours either side of spring high and low tides and added in algal meadows as a fifth 
habitat.  

In total, we recorded 125 species of adult and juvenile fish during surveys. Eleven (9%) of these were observed 
only as juveniles, 43 (33%) as both juveniles and adults, and 74 (60%) only as adults. Among species, 88% of all 
recorded juveniles were represented by the top 12 species. Interestingly, many of these are considered as highly 
valued species to the Bardi Jawi community (e.g. Mangrove jack, Golden-lined rabbitfish, Spanish flag) because 
of their dietary and/or cultural significance.  

Among habitats, mangroves, seagrass and algal habitats were all represented by juvenile fishes from 18-20 
species, intertidal pools by 13 and coral reefs by 35 species with only 6% of the species pool observed in all five 
habitats. A closer look at the distribution of species among habitats revealed very distinct partitioning of nursery 
grounds. Our analyses showed that mangroves and seagrass areas were critical nursery habitats for many 
important species and that many of these species exclusively recruited to these habitats. In comparison, the 
other three habitats shared a common species pool indicating that any future sampling should concentrate on 
mangrove, seagrass and, given their increased diversity, coral reef habitats to provide comprehensive coverage 
of fish recruitment.  Our findings therefore support the need for representative protection of all these habitats 
to ensure conservation of the full cohort of fish biodiversity. 

Seasonally, fish recruitment was strongest in the wet season (March / April) for most species although there were 
exceptions. Interestingly, some of the species considered most important to the local indigenous community are 
species that we identified as having strong year round recruitment providing scientific support for documented 
traditional Bardi Jawi fishing knowledge and management practices.  

Our sampling program provides a blueprint for future monitoring of fish recruitment in the challenging Kimberley 
marine environment. Here we have established best-practice sampling techniques, provide locations of 
appropriate monitoring sites for quantifying juvenile fish recruitment across a range of representative habitats 
to form the basis for future long-term monitoring in the southern Kimberley region. Regular monitoring enables 
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assessments of how recruitment influences adult populations relative to other anthropogenic pressures (e.g. 
fishing, climate change). As such recruitment surveys should be conducted in conjunction with monitoring of 
ecologically, recreationally, commercial and culturally significant adult fish, which are typically the focus and 
priority of monitoring programs. 
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1 Introduction  

Fish population replenishment typically occurs via recruitment of larvae from offshore pelagic into shallow-water 
environments where they settle and grow into juveniles (Cowen et al. 2007). The supply of new recruits is 
inconsistent and varies enormously between years, seasons, locations and habitats for various reasons (Doherty 
& Williams 1988, Doherty 1991). Among other factors, the number of mature adults and their reproductive 
output, oceanographic currents, sea temperature, pelagic food supply and behavioural aspects of larval fishes all 
contribute to variation in the rates of supply of new recruits (Russell et al. 1977, Robertson et al. 1999). 
Additionally, once newly-recruited fishes settle into shallow water environments, the rates of juvenile 
survivorship also vary greatly due to ecological factors linked to resource availability (e.g. food and habitat) and 
predation rates (Jones 1991, Trip et al. 2014). The net outcome of all these processes determines the future of 
adult fish populations (Hixon et al. 2012, Wilson et al. 2016). Therefore, understanding the spatial and temporal 
patterns of fish recruitment processes is crucial for assessing the future of fish populations and developing local 
management and conservation strategies. 

The Kimberley region is rich in biodiversity (Wilson 2013) and remains one of the least explored and pristine 
marine ecosystems on the planet (Halpern et al. 2008), although the region is under increasing stress from 
climate change (Halpern et al. 2015). Like most ecological processes, fish recruitment in the Kimberley is poorly 
described or understood (DEWHA 2007) although patterns of shelf and offshore fish larval distribution have been 
investigated (Holliday D, 2011). Compounding this lack of information, the environment of the Kimberley region 
is complex and unique. Daily tidal ranges of up to 12 m, a labyrinth of islands that funnel and accelerate multi-
directional water flow, significant seasonal freshwater input and complex bathymetry (Wilson 2013, Lowe et al. 
2016) bring together complex conditions for larval/juvenile fishes whether they be transiting from a pelagic to a 
benthic environment, or have already metamorphosed and settled to shallow coastal waters. These complex 
conditions are likely to both help and hinder fish recruitment processes to nearshore areas. For example, strong 
tidal flows affect larval transport into shallow water environments depending on the timing and alignment of 
recruits with moon and daily tidal cycles (Stephens et al. 2006). Strong tidal currents and associated reef 
circulation may also bring more planktonic food to growing recruits but at the same time make waters turbid, 
possibly reducing foraging success and overall survivorship (De Robertis et al. 2003).  

Research over the past two decades has shown that self-recruitment back to natal habitats is an important 
feature in tropical marine fishes making up anywhere between 15-89% of recruitment numbers (Jones et al. 
1999, 2005, Swearer et al. 1999). Since this finding, attention has focused on how larval fishes are able to navigate 
back to their parent’s birthplace. This body of work has shown astonishing evidence of very sophisticated 
behaviour (e.g. position in water column to facilitate directional travel, strong and sustained swimming ability) 
and sensory faculties (sight, smell, sound) that help explain this phenomenon (Fisher et al. 2000, Leis et al. 2003, 
Paris & Cowen 2004, Simpson et al. 2005, Dixson et al. 2008). But how well do these faculties and features 
operate under the extreme hydrological conditions of the Kimberley? Recent genetic evidence in two fish species 
(the benthic egg layer damselfish Pomacentrus milleri and the open-water spawning snapper Lutjanus 
carponotatus using single nucleotide polymorphism markers) suggests demographically independent 
populations exist between the Kimberley and neighbouring Pilbara Regions (Berry et al. 2016). This and other 
studies in the region indicate that, unlike the Pilbara region of Western Australia, genetic exchange within the 
Kimberley region itself as well as among offshore shoals can be surprisingly limited (in the order of hundreds of 
kilometres) in a number of taxonomic groups including fish (Underwood et al. 2012). This suggests that the 
extreme hydrological conditions in the Kimberley can promote genetic retention rather than widespread 
dispersal of fish larvae, and that local adult fish stocks may have a comparatively large influence on the patterns 
of recruitment strength within localised areas of the Kimberley. High rates of self-recruitment may therefore be 
a strong feature in this region, making the assessment of local recruitment processes and their variation 
particularly relevant for understanding and managing local fish populations.  
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Indigenous Australians have been managing their own aquatic resources for millennia (Yunupingu & Muller 2009, 
Noble et al. 2016). The Kimberley coastline not only plays a significant role in the daily lives of indigenous people 
by providing natural resources, but is also deeply embedded in their social, cultural and spiritual values. There 
are many examples of traditional codes of best practice governing conservation measures such as seasonal 
restrictions on marine resource extraction, off-limit areas and limits to catch sizes (Ross & Pickering 2002). These 
conservation measures are based on knowledge, which is collectively termed “indigenous knowledge”, and 
based on “traditional ecological knowledge” that has been honed over historical time periods through trial and 
error (Gadgil et al. 1993). However, modern day coastal Australia including the Kimberley is facing growing 
pressures from many new sources. Increased commercial, recreational and indigenous fishing, coastal 
development, tourism and industry are all potential threats to finfish. In addition, forces such as climate change 
which affects sea temperatures, food and habitat resource supply and quality, freshwater regimes and incidences 
of damaging disturbances such as storms and cyclones are also increasing and relevant to modern management 
(Wu et al. 2012, Cai et al. 2015). Faced by unprecedented pressures on marine resources, there is a shared 
realisation by indigenous and non-indigenous managers alike that the integration of traditional knowledge 
systems and western science provides a potent way in which to better understand our coastline ecosystems in 
order to meet and respond to these new challenges. Providing baselines for fish recruitment across space and 
time in the Kimberley is therefore timely and an important step towards providing a rigorous way to measure 
any future effects of chronic or acute anthropogenic and non-anthropogenic pressures on local fish populations.  

The benefits of understanding fish recruitment processes include providing an indication of future demographic 
trends (e.g. Wilson et al., 2016), identifying nurseries of importance (e.g. Dorenbosch et al., 2006; Evans et al., 
2014), assessing the general and continued health and well-being of fish fauna within an ecosystem, 
understanding the potential for recovery following an acute disturbance, and providing a way to identify and 
understand the mechanisms responsible for recruitment processes into particular areas (Sale 1980, Wilson et al. 
2006, Halford & Caley 2009). Understanding fish recruitment is therefore very relevant to the spatial 
management of fish stocks for indigenous and government agencies tasked with conservation planning and 
policy.  

Here, we document the spatial and seasonal patterns of fish recruitment in the Cygnet Bay Sunday Island area of 
the Western Kimberley  during a 12 month period, with an aim to; 

1) Develop cost-effective techniques suitable to the Kimberley marine region that, wherever possible, 
allow direct comparisons with other data-sets in Western Australia 

2) Provide baseline quantitative information on levels of fish recruitment across a gradient of commonly 
available Kimberley habitats 

3) Identify seasonal trends in fish recruitment for selected important species 
4) Provide an overview of the relative importance of representative habitats to fish recruitment processes 
5) Identify possible biodiversity hotspots and population strongholds for juvenile fishes 
6) Establish monitoring sites to form the basis for a future long-term monitoring program 

Before fish recruitment could be properly surveyed, an in-depth investigation to develop an appropriate sampling 
technique for the Kimberley was completed, given the extreme hydrodynamic conditions of the region, which 
make traditional diver-based methods of quantifying fish recruitment unfeasible (see Depczynski et al. 2015). 
New remote methods to suit Kimberley conditions had to be developed, tested, refined and compared to each 
other in order to provide the best alternative to traditional diver-based methods. In addition to the challenging 
hydrology, the Kimberley benthos is typically composed of a mosaic of overlapping habitats rather than 
categorically homogenous environments (Wilson 2013). Given that many fish species either have a preference 
for or even exclusively recruit and grow up in specific nursery habitats (Dorenbosch et al. 2006, Wilson et al. 
2010), it was necessary that the method chosen could adequately deal not only with extreme hydrological 
conditions but also sample all types and combinations of habitats. Ultimately, the method chosen was a 
replicated set of remote underwater stereo-video stations (RUVs) that could be safely deployed in all coastal 

https://www.environment.gov.au/system/files/pages/743e805c-4a49-42a0-88c1-0b6f06eaec0e/files/soe2011-report-marine-environment-3-pressures.pdf
https://www.environment.gov.au/system/files/pages/743e805c-4a49-42a0-88c1-0b6f06eaec0e/files/soe2011-report-marine-environment-3-pressures.pdf
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habitats identified and were able to adequately capture differences in the community structure of fish recruits. 
The method used twin cameras allowing accurate size measurements (Cappo et al. 2003, 2006), which were 
required to delineate recruits from adults based on size cut-off points for adult vs. juvenile life stages. Stereo-
RUVs proved to be the best technique for assessing spatiotemporal variation in fish recruitment patterns in the 
Kimberley. A full and detailed analysis of technique comparisons can be found in Depczynski et al. (2015) and is 
summarised in the next section.  

2 Materials and Methods 

As described above, a pilot study aimed at developing, testing and refining cost-effective techniques suitable to 
quantifying juvenile fishes in the testing Kimberley conditions was undertaken during the wet season in April 
2015 (see Depczynski et al. 2015). In summary, seven techniques: remote underwater stereo-video systems 
(RUVs), rotenone, box trawls, drop cameras, and underwater visual census (transect, stationary and block), were 
thoroughly trialed at six locations which together encompassed four contrasting habitats; intertidal rockpools, 
seagrass, mangrove and coral reefs. A further two techniques were explored, but deemed unsuitable before the 
field trial stage. Although no single technique was able to comprehensively capture the full diversity of the 
Kimberley juvenile fish assemblage within any habitat, stereo-RUVs was the most consistent technique across 
habitats (Depczynski et al. 2015). RUVs were also the only technique that could be used successfully in all four 
habitats importantly allowing among-habitat comparisons to be made. In fact, RUVs were the only method to 
successfully record juvenile fishes in mangroves. Additionally, they provide a permanent record, are safe to use 
(do not require divers), repeatable, easily deployed and reasonably time efficient in providing precise estimates 
of abundance and acceptable levels of diversity when compared to all other techniques trialed. Finally, stereo-
video techniques have previously proved successful for sampling small fishes (<300 mm total length; Davis et al. 
1997, Norcross & Mueter 1999, Cappo et al. 2006, Santana-Garcon et al. 2014). Precision estimates indicated 
that five replicate RUV units were sufficient to ensure robust quantification of juvenile fishes for each location x 
habitat combination providing an efficient and consistent method to address the aims outlined above.  

2.1 Study location 

This study was conducted in shallow nearshore habitats in the Cygnet Bay and Sunday Island areas in the western 
Kimberley, northwest Australia (approx. 16.5°S, 123°E, see Appendix 1 for specific site details) (Figure 1). The 
Sunday Island group forms a string of islands at the tip of the Dampier Peninsula that extends to the east across 
the opening of King Sound. The area is rich in biodiversity, with high levels of endemism and a mosaic of habitat 
types including intertidal rockpools, mangroves, seagrass and algal beds, and well developed coral reef systems 
(Fox & Beckley 2005, Thorburn et al. 2007, Jones et al. 2015).  
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Figure 1. Map of the six study locations in the Cygnet Bay and Sunday Island areas of the western Kimberley region in 
northwest Australia (Jaydee= Jackson Island, Jalan= Tallon Island) (a). Stereo-RUV deployments were conducted during wet 
(March-April 2016) and dry (October 2015) seasons in five different nearshore habitats (mangroves, seagrass beds, 
macroalgal beds, submerged coral reefs, and inter-tidal rockpools, b), and bi-monthly at coral reefs. Each location by habitat 
combination was treated as a site, and stereo-RUVs replicated randomly at each site through time. For sampling details see 
Tables 1 and 2.  
 
The diverse coastal and marine communities of the western Kimberley region are strongly influenced by the 
unique oceanography of the area. Tidal ranges of up to 12 m occur on spring tides twice a day, creating tidal 
currents of up to 10 knots (Purcell 2002, Lowe et al. 2015), with the biggest tides occurring towards the end of 
the rainy season from March to April (Ruprecht & Rogers 1998). During these extreme tidal fluxes coastal 
ecosystems may be completely exposed to air for up to four hours, resulting in daily sea temperature fluctuations 
of up to 7⁰C in very shallow or intertidal areas, to which local organisms such as corals have become adapted 
(Purcell 2002, Richards et al. 2015, Schoepf et al. 2015). On coral reef habitats in particular, tidal fluxes create 
large intertidal reef terraces that alternate between periods of complete submersion and exposure, and create 
a series of intertidal rockpools of differing size (Purcell 2002, Schoepf et al. 2015). 

2.2 Sampling design and methods  

To evaluate spatial trends, seasonal trends, and habitat preferences in patterns of fish recruitment, two separate 
studies were conducted using stereo-RUV deployments replicated at six locations. In the first study, seasonal 
trends across all five habitats were assessed during wet (March-April) and dry (October) seasons (Figure 1, Table 
1). The second study was aimed at further exploring temporal patterns in fish recruitment on a bi-monthly basis 
over a 12-month period (Oct 2015 – Aug 2016) in subtidal coral reef habitats only (Table 2), which were taken as 
a higher-resolution proxy for temporal patterns in all other habitats. All drops were made in water depths 
between 0.4 and 6.9 m. To minimise the effects of extreme tidal currents, drops were either timed to coincide 
with neap tides or restricted to one hour either side of peak high and low spring tides to facilitate identifications 
by minimizing turbidity while sampling. All habitats within each location were separated by at least one kilometre 
with the exception of mangrove and seagrass beds, which were usually found adjacent to each other.  
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Stereo-RUV deployments were all unbaited because of the potential biases of bait attracting predators of juvenile 
fishes and therefore limiting their appearance in the field of view (Harvey et al. 2007). Stereo-RUV units consisted 
of two GoPro Hero 3+ video cameras in waterproof housings mounted on a custom made base bar made of light 
aluminium frame (SeaGIS Pty. Ltd; www.seagis.com.au, Figure 2). Each system was optimised for sampling of 
smaller bodied fishes with video cameras mounted 0.4 m apart on the base bar, and converged inwardly at a 6° 
angle, resulting in an optimised field of view with stereo-coverage from 0.5 m in front of the cameras outwards 
to 3 m. Stereo-RUV units were calibrated in a pool prior to deployment in the field using a standard calibration 
cube (www.seagis.com.au).  

Five stereo-RUVs separated by a distance of 50 m were deployed consecutively during daylight hours from a 
small vessel (10 m) at each location x habitat combination (i.e. site) and left to record for 20 minutes. We chose 
20-min deployments as optimal based on a combination of video analysis/field efficiency and pilot study data 
calculations based on species and abundance accumulation curves, which identified maximum species diversity 
and relative abundance of juvenile fishes was adequately captured within this period (C Piggott unpublished 
data). We also judged 50 m spacings of replicate units to be sufficiently well spaced on the basis of the restricted 
home ranges of most juvenile fishes. The same sampling design was followed on subsequent surveys (seasonal 
and bi-monthly) at each of the sites surveyed, with specific RUV deployment locations selected at random within 
each site. 

 
Table 1. Summary of stereo-RUV deployments during the wet (March-April 2016) and dry (October 2015) seasons at five 
habitats (mangrove, seagrass, algae, coral and inter-tidal rockpools), across six locations in the Sunday Islands, western 
Kimberley. A total of 151 stereo-RUVs were deployed in the region, across 17 sites (location x habitat combination). 

  Mangrove Seagrass Algae Coral Inter-tidal pools 

Location wet dry wet dry wet dry wet dry wet dry 

ShentonBluff 0 0 0 0 0 0 5 5 0 0 

Noyon 5 0 0 0 0 0 5 4 0 0 

Jaydee 5 4 0 0 5 3 5 5 0 0 

Jalan 4 5 5 5 0 0 0 0 5 0 

Moori 4 3 5 4 5 5 4 5 0 0 

SundayIsland 5 5 4 4 4 5 0 0 8 6 

Total 23 17 14 13 14 13  19 19 13 6 
 
Table 2. Summary of bi-monthly stereo-RUV deployments at subtidal coral reef habitat across five locations in the Sunday 
Islands, western Kimberley. A total of 107 stereo-RUVs were deployed at coral reef habitat during the 12 month period. *Note 
that location and site are equivalent for this dataset, given that only coral reef habitat was surveyed. 

Location Oct15 Dec15 Feb16 Mar/Apr16 May16 Jul/Aug16 

Noyon 4 5 0 5 4 5 

Jaydee 5 5 4 5 4 0 

Jalan 0 5 3 4 3 5 

Moori 5 4 4 4 5 4 

SundayIsland 0 0 5 5 0 5 

Total 14 19 16 23 16 19 
 
 

http://www.seagis.com.au/
http://www.seagis.com.au/
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Figure 2. Diagram showing the design (a), functioning (b) and deployment of stereo-RUV units at an inter-tidal rockpool (c) 
and from a small vessel (d) in the western Kimberley. 
 

2.3 Image analyses 

2.3.1 Fish assemblages 

Video footage was analysed using the software EventMeasure™ (SeaGIS Pty. Ltd), following calibrations using 
the software CAL (SeaGIS Pty. Ltd) (Harvey & Shortis 1998). All fish recorded within 3 m of the cameras were 
identified to the lowest taxonomic level possible, measured (to the nearest 0.1 mm) and categorised as juvenile 
or adult (see criteria below). All planktonic schooling fishes from the families Caesionidae (fusiliers) and Clupeidae 
(sprats/anchovies) were excluded from the analyses because of their lack of site fidelity to distinct habitats and 
potential to bias fish recruitment patterns. To avoid repeat counts of individual fish re-entering the field of view, 
a conservative measurement of relative abundance (MaxN) was recorded. MaxN is defined as the maximum 
number of individuals of the same species appearing in a single paused frame (Priede et al. 1994). MaxN was 
recorded separately for adult and juvenile fishes, resulting in two separate MaxN ‘by life-cycle stage’ 
measurements per species. 

Individuals were classified as juvenile based on colouration and body size (L33, <33% of maximum adult total 
length) (Nagelkerken & van der Velde 2002, Dorenbosch et al. 2005). Information on maximum adult total length 
(Lmax) for each species was obtained preferentially from published literature (Allen & Swainston 1988, Allen et al. 
2003) or FishBase (www.fishbase.org) in circumstances where no published literature existed. For individuals 
that could not be reliably identified to species, the average Lmax of the three most likely species was used to 
calculate L33. Juvenile fish lengths (Total length [LT]) were taken at the corresponding MaxN ‘by life-cycle stage’ 
frame, to avoid making repeated measurements of the same individuals. In order to get a better side view of 
each individual for measurement purposes, if required, video frames were advanced from the time of MaxN, 
making sure individual fish were followed through the sequence. Where a measurement of an individual fish was 
not possible (e.g. bent position, present in only one camera, bad visibility etc.), it was conservatively classified as 

http://www.fishbase.org/
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an adult and discounted from the juvenile data set. All video analyses were performed by three experienced 
observers (KC, TB, MB) under the same set of strict guidelines. Cross-checking of a subset of videos between 
observers was then conducted in order to guarantee consistency for both MaxN and species identification. 

2.3.2 Habitat variables 

Habitat type for each stereo-RUV deployment was initially classified into five categories: mangrove, seagrass, 
algae, coral and inter-tidal rockpools, based on the general habitat targeted during each RUV deployment. Initial 
exploration of RUV videos indicated that these habitat categories were often a mosaic of overlapping habitats. 
For this reason we estimated more detailed habitat composition measures for each stereo-RUV, so that we were 
able to define patterns of fish recruitment (abundance and species composition) based on continuous, rather 
than categorical habitat data. This provided a more robust and realistic picture of the benthic habitat in the 
Kimberley. Continuous habitat data (% cover) were estimated following the rapid annotation methods described 
in McLean et al. (2016) and using the software TransectMeasure™ (SeaGIS Pty. Ltd). Benthic composition for each 
stereo-RUV deployment was quantified along a 5 x 4 grid overlaid onto a high definition habitat image obtained 
from each RUV deployment. The dominant habitat type at each of these grid rectangles was classified according 
to seven broad benthic categories: hard corals, consolidated substrates, macroalgae, mangroves, seagrasses, 
sponges and unconsolidated sediments, following the CATAMI classification scheme (Althaus et al. 2013). An 
‘open water’ category was included for rectangles where no biota was present. 

2.4 Data analyses 

Two juvenile fish datasets were generated for statistical interrogation following video analyses; a wet vs. dry 
season analysis targeting fish recruitment patterns across all five habitat types; and a bi-monthly analysis for the 
coral reef habitat only (see Tables 1 & 2). We used univariate generalised additive mixed models (GAMMs) to 
investigate patterns of abundance and multivariate distance-based linear models (DistLMs) to examine changes 
in community composition for each data set. In all models, habitat was treated as a continuous variable (% cover 
or proportion), season and sampling period (for bi-monthly surveys) as factors, and site (i.e. each location x 
habitat combination) as a random effect. Habitat variables were transformed (log10(x + 1) or square root) where 
necessary to downplay outlying values and better represent relationships with juvenile fish abundance and 
species composition.  

For both univariate and multivariate models, variable importance metrics were calculated for each predictor 
variable based on weighted Akaike’s information criterion values corrected for finite sample sizes (wAICc) 
(Burnham & Anderson 2002). Variable importance metrics assisted model interpretation and allowed 
identification of the most important predictors of the relative abundance of juvenile fishes and their species 
composition. Each variable importance value was calculated as the average Akaike weight of all subsets of models 
containing that variable, scaled between 0 and 1 and multiplied by the R2 value of the best fitted model. 

2.4.1 Patterns of abundance 

GAMMs were fitted to univariate data on total juvenile fish abundance (MaxN per replicate) with package ‘mgcv’ 
in R version 3.3.1 (R Development Core Team 2014). GAMMs were chosen due to their capacity to deal with non-
linear relationships between dependent and continuous predictor variables (Austin 2007), and their inclusiveness 
of random effects that account for correlation between observations on the same sampling unit (e.g. RUV 
deployments within site). GAMMs with all possible variable subsets were fitted to untransformed juvenile fish 
relative abundance data, and the appropriate distribution used for model analyses (i.e. Gaussian distribution 
with log-link function for seasonal data, and Poisson for bi-monthly data). Models containing variables with a 
correlation >0.40 were excluded from the full subset of models to eliminate strong collinearity. Model selection 
was based on AICc, which was used to compare models and select the most parsimonious one (i.e. fewer number 
of predictors and within two AICc units of the model with the lowest AICc value).  
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2.4.2 Patterns of species composition, temporal recruitment of selected species and species 
diversity 

For multivariate data on species composition, we used DistLMs (Legendre & Anderson 1999) to better 
understand spatiotemporal patterns in the juvenile fish assemblage. A Bray-Curtis dissimilarity matrix was 
calculated for square root transformed data on fish abundance at the species level (MaxN per species per 
replicate), and DistLMs fitted using a full subsets approach excluding models with correlated variables (>0.40). 
Model selection procedures to choose the most parsimonious model were based on a multivariate analogue of 
the AICc in a manner equivalent to that described for GAMMs above (see Anderson et al. 2008). Analyses used 
the PERMANOVA+ add-on package for PRIMER v.6 (Anderson et al. 2008). Distance-based redundancy analysis 
(dbRDA; Legendre & Anderson 1999), a form of ordination, was then used to visualise the chosen model with 
vectors overlaid for individual fish species, habitat variables (% cover) and factors (season or sampling period); 
only vectors with Pearson correlations >0.25 with the dbRDA axes were included.  

For a more in-depth exploration of temporal recruitment patterns in the most abundant juvenile fish species in 
the Kimberley region, we constructed basic summary plots of average juvenile fish abundance (MaxN ± SE) 
pooled across habitats during each season, and at coral-reef habitat during each sampling period. In addition, we 
used fish length data (LT) on the most abundant juvenile species, to produce length-frequency distributions 
pooled at either the season or sampling period level, taking all length measurements irrespective of habitat 
surveyed. Bin-widths for length-frequency distributions were selected according to the maximum juvenile length 
for each species (L33, <33% of maximum adult total length). Finally, we constructed species accumulation curves 
to examine species diversity at the five general habitat types surveyed (mangroves, seagrasses, algae, corals and 
inter-tidal rockpools), and during wet vs. dry seasons. These curves allowed us to compare the number of species 
present at each habitat type, while taking into account dissimilarities in sampling effort between habitats, and 
were fitted using the  ‘vegan’ package in R version 3.3.1 (R Development Core Team 2014). 

3 Results 

3.1 General abundance and species diversity patterns 

We identified 125 fish species from 22 families. Eleven (9%) of these species were observed only as juveniles, 43 
(33%) as both juveniles and adults, and 73 (60%) only as adults (Appendix 2). Of the species for which juveniles 
were observed, detected abundance was mostly low, with 88% of the abundance represented by only 12 species 
(Choerodon cyanodus, Scarus JHC sp3, S. ghobban, Lutjanus carponotatus, Gerres oyena, Scaevius milii, 
Dischistodus darwiniensis, Siganus lineatus, S. doliatus, Lethrinus laticaudis. Acanthurus grammoptilus and 
Plectropomus maculatus), and 39% of total abundance represented solely by Choerodon cyanodus (igoolan). 
These species were the main drivers of recruitment patterns in the study area. 

Overall, detected juvenile species diversity was similar among mangrove, seagrass and algae habitats (18-20 spp. 
in total) and lowest in the inter-tidal rockpools (13 spp.), with the coral reef habitat supporting the highest 
number of species (35 spp.) (Appendix 3). Only three juvenile fish species (6% of juvenile species pool) were 
observed in all five habitats (Appendix 3), indicating a high degree of habitat specificity among the Kimberley 
juvenile fish community. RUV surveys captured recruitment for at least seven of the species that are most 
important to the local Bardi Jawi community as a food resource (Lutjanus carponotatus (joorloo), L. 
argentimaculatus (maarrarn), L. russellii (ilnilirr), Siganus lineatus (barrbal), S. doliatus, Choerodon cyanodus 
(igoolan) and C. schoenleinii) (Figure 3)). Overall, recruitment was much stronger during the wet (March/April) 
than in the dry (October) season for all five habitats with among-habitat comparisons indicating that the lowest 
abundances were found in the mangroves (Figure 3). 
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3.2 Seasonal patterns in abundance, species diversity and assemblage structure 

Our results show strong seasonal and habitat-gradient patterns in fish recruitment strength (Figure 4). 
Spatiotemporal variation in the total abundance of juvenile fishes was best explained by a model using a 
combination of mangrove presence (% cover) and season, with this model accounting for 36% of variation in the 
data (Figure 4a, Table 3). Total juvenile fish abundance was lowest in mangroves (Figure 4b) but showed similar 
values at the other four habitats surveyed: seagrass, algae, coral and inter-tidal rockpools. At all habitats, the 
abundance of juvenile fishes was significantly higher during the wet season (Figure 4c).  

Multivariate analyses revealed that fish assemblages differed between the habitats surveyed (Figure 5a, 
Appendix 3). Sites clustered into three distinct groups depending on the habitat targeted: (1) mangrove, (2) 
seagrass, and (3) a combined group consisting of algae, coral and inter-tidal rockpools, which all had a more 
similar species composition (Figure 5a). The model that best accounted for the spatiotemporal variation in 
juvenile fish assemblages included the amount (% cover or proportion) of mangrove, seagrass and 
unconsolidated sediments, combined with season, which together accounted for 24% of the variation in our data 
set (Figure 5b, Table 3). Twelve species were significantly correlated with the dBRDA axes (>0.25) and were 
primarily responsible for driving separation between habitats. The snappers Lutjanus argentimaculatus 
(maarrarn) and L. russellii (ilnilirr) associated strongly with mangrove habitats, Gerres oyena, Siganus lineatus 
(barrbal) and Scaevius milii with seagrass, and Pomacanthus sexstriatus (gorno), Acanthurus grammoptilus 
(gambarl), Choerodon schoenleinii (baramba), C. cyanodus (igoolan), Dischistodus darwiniensis (doodany), 
Lutjanus carponotatus (joorloo) and Lethrinus laticaudis (madalngoorr) with the mixed cluster of coral, algae and 
inter-tidal pools (Figures 3 and 5a). There was also a seasonal signal in the suite of species that recruited in the 
wet and dry seasons respectively (Figure 5a, Appendix 4). Species such as Scaevius milii and Siganus lineatus 
recruited strongly during the wet season whilst Pomacanthus sexstriatus, Acanthurus grammoptilus and 
Choerodon schoenleinii recruited in higher numbers during the dry season (Figure 5a). 
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Figure 3. Graphical representation summarizing our findings from juvenile fish RUV surveys during the wet (top panel) and dry (bottom panel) seasons across five habitat types (mangrove, 
seagrass, algae, coral and inter-tidal rockpools; separated by dashed lines). Habitats portrayed from left to right follow a typical Kimberley habitat profile from inter-tidal mangroves to adjacent 
seagrass meadows and algal fields to elevated inter-tidal rockpools and submerged coral reefs. Colour shades in the background of each habitat represent groupings based on observed statistical 
differences in fish assemblage structure among habitats (brown - mangroves, green - seagrass, and pink - algae, coral and inter-tidal rockpools). Each fish diagram represents a different juvenile 
species; key to right shows scientific and Bardi Jawi names. Only the ten most abundant species distinguishing between fish assemblages at the habitat level are presented. The number of fish 
in each panel is equivalent to the average number of juvenile fishes per RUV replicate (e.g. MaxN = 5 in mangrove habitat during the wet season).



Key Ecological Processes in Kimberley Benthic Communities: Fish Recruitment 

 

 Kimberley Marine Research Program  |  Project 1.1.2a 11 
 

 
 

 
 

Figure 4. Graphical representation of the most parsimonious generalised additive mixed model (GAMM) for explaining 
variation in total abundance of juvenile fishes according to habitat (% or proportion of cover) and season surveyed; (a) shows 
relative variable importance for all explanatory variables used in the full subset of fitted GAMMs; (b and c) show residual 
abundance of total juvenile fishes in response to their most important explanatory variables: mangrove cover and season, 
identified via the most parsimonious GAMM (see Table 3 for model selection). Solid black lines represent model fit (estimated 
smoothing curve for continuous variables), and shading (b) or dotted lines (c) represent ± 2*SE of the model fit estimate.*Note 
there is no SE associated with the dry season in (c), because this was taken as the reference level for factor season by the 
model. 
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Table 3. Best univariate (GAMMs; a) and multivariate (DistLMs, b) models, selected from the full subset of fitted models for 
predicting total abundance of juvenile fishes in the southern Kimberley region. The most parsimonious model (in bold) had 
the lowest Akaike Information Criterion value corrected for finite sample sizes (AICc), and fewest variables. In (a) the five best 
GAMMs are presented and in (b) all DistLMs within 2 AICc units of each other.  
 
 

Dependent variable  Explanatory Variables edf R2 AICc 

Juvenile MaxN seasonal data five habitats (# fish per RUV)    
 

(a) GAMMs Mangrove, season 12.65 0.364 357.469 

  Mangrove, unconsolidated, season 13.82 0.376 359.700 

  Consolidated, mangrove, season 10.47 0.335 361.058 

  Mangrove, seagrass, season 6.62 0.258 361.576 

  Season 7.59 0.250 362.879 

  
    

(b) DistLMs Mangrove, seagrass, coral, unconsolidated, 
season 

 
0.253 1057.000 

  Macroalgae, mangrove, seagrass, 
unconsolidated, season 

 
0.252 1057.100 

  Mangrove, seagrass, unconsolidated, 
season 

 
0.239 1057.600 

  Macroalgae, mangrove, seagrass, coral, 
season 

 
0.246 1058.300 

  Consolidated, macroalgae, mangrove, 
seagrass, coral, season 

 
0.257 1058.400 

  Macroalgae, mangrove, seagrass, coral, 
unconsolidated, season 

 
0.255 1058.700 

  Consolidated, mangrove, seagrass, coral, 
unconsolidated, season 

 
0.255 1058.800 

  Consolidated, macroalgae, mangrove, 
unconsolidated, season 

 
0.255 1058.900 

  Consolidated, macroalgae, mangrove, coral, 
unconsolidated, season 

  0.254 1058.900 
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Figure 5. Distance based redundancy analyses (dBRDA) showing spatiotemporal variation in juvenile species assemblages 
(bottom right vectors) and significant variables explaining this variation (top right vectors) (a). Data are MaxN per RUV 
replicate plotted at the site level and represented by symbols and colours as shown in the legend according to habitat targeted 
(brown - mangrove, light green - seagrass, dark green - algae, pink - coral and blue - inter-tidal rockpools). Circles depict the 
three major clusters visually identified, and have no statistical significance. Relative variable importance values for all 
explanatory variables in the full subset of fitted distance-based linear models (DistLMs) are shown in (b); for model selection 
see Table 4.  
 

3.3 Bi-monthly patterns in juvenile fish abundance and species diversity - coral reef habitat 

Percentage coral cover, sampling period and % consolidated substrate cover provided the best combination of 
variables to explain variation in recruit abundances with 45% of total variance explained (Figure 6a, Table 4). 
Juvenile fish abundance was fairly constant across low to medium levels of coral cover (0 to 60%) but increased 
slightly from 60-80% cover before plateauing (Figure 6b). Overall, highest recruitment was seen from December 
to April with the highest peak in December, and weakest recruitment was observed during July to October with 
the lowest in July/August (Figure 6c). The influence of consolidated substrate cover (i.e. boulders, rock, bedrock), 
showed fish abundance peaked at intermediate levels of cover (Figure 6d).  

Juvenile fish assemblages differed markedly between peak dry season (October) and all other bi-monthly surveys 
(Figure 7a, Appendix 5). This separation was mostly driven by the higher abundances of the wrasse Choerodon 
schoenleinii, coral trout Plectropomus spp. and angelfish Pomacanthus sexstriatus during peak dry season 
(October). Outside of October, bi-monthly surveys revealed the persistence of a more uniform juvenile fish 
assemblage although there were finer-scale differences observed here which also appear to relate to wet 
(December-March/April samples) and dry (May-July/August) survey periods. Unsurprisingly, our modelling 
identified period as the main influential variable (11% of variation) driving patterns in assemblage structure 
among bi-monthly surveys (Figure 7b, Table 4). However, coral habitats in the Kimberley are often a mix of coral 
and algae and both % macroalgae and coral cover were quite influential in influencing assemblage structure 
(Figure 7b).  

In general, there was a high degree of concordance between our bi-monthly survey results and those exhibited 
among all habitats in our seasonal surveys suggesting that a reduced sampling design covering the end of the 
wet and dry seasons (i.e. March-April and October) provided a good representation of the spatiotemporal 
variation in the juvenile fish assemblages of the southern Kimberley region. 
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Figure 6. Graphical representation of the most parsimonious generalised additive mixed model (GAMM) for explaining 
variation in total abundance of juvenile fishes according to habitat (% or proportion of cover) and sampling period; (a) shows 
relative variable importance for all explanatory variables used in the full subset of fitted GAMMs; (b), (c) and (d) show residual 
abundance of total juvenile fishes in response to their most important explanatory variables presented in order of importance 
(see Table 3 for model selection criteria). Solid black lines represent model fit (estimated smoothing curve for continuous 
variables), and shading (b and d) or dotted lines (c) represent ± 2*SE of the model fit estimate. *Note there is no SE associated 
with the December period in (c), because this was taken as the reference level for factor period by the model. 
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Table 4. Output from the best univariate (GAMMs; a) and multivariate (DistLMs, b) models, selected from the full subset of 
fitted models for predicting total abundance of juvenile fishes in coral reefs in the southern Kimberley region in response to 
habitat and sampling period. In (a) the five best GAMMs are presented and in (b) all DistLMs within 2 AICc units of each other. 
The final models selected were the ones with the lowest Akaike Information Criterion value corrected for finite sample sizes 
(AICc), and with the fewest variables (most parsimonious; in bold). 
 

Dependent variable  Explanatory Variables edf R2 AICc 
Juvenile MaxN bi-monthly data coral habitat (# fish per RUV)  

 (a) GAMMs Consolidated, coral, period 16.42 0.447 746.784 

  Coral, period 13.23 0.410 757.378 

  Consolidated, macroalgae, period 15.69 0.425 757.429 

  Coral, unconsolidated, period 14.20 0.412 759.284 

  Consolidated, unconsolidated, period 13.57 0.396 766.243 

  
    

(b) DistLMs Macroalgae, period 
 

0.145 746.900 

  Coral, period 
 

0.138 747.800 

  Macroalgae, unconsolidated, period 
 

0.155 748.140 

  Macroalgae 
 

0.037 748.400 

  Period 
 

0.113 748.570 

  Consolidated, algae, period 
 

0.151 748.600 

  Consolidated, coral, period 
 

0.150 748.700 

  Macroalgae, coral, period 
 

0.150 748.720 

  Coral, unconsolidated, period   0.149 748.890 

 
 
 

 
 
Figure 7. Distance based redundancy analyses (dBRDA) showing variation in juvenile species assemblages (bottom right 
vectors) in coral reef habitat according to sampling period (top right vectors) (a). Data are MaxN per RUV replicate plotted at 
the site level and represented by symbols in the legend. Relative variable importance values for all explanatory variables in 
the full subset of fitted distance-based linear models (DistLMs) are shown in (b); for model selection see Table 4. Circles depict 
the two major clusters visually identified, and have no statistical significance. 
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3.4 Abundance and size-structure patterns of the ten most abundant juvenile fish species 

Species-specific abundances between wet and dry seasons in the ten most abundant species show that 
recruitment strength is typically higher in the wet season (Figure 8a). Higher wet season recruitment was more 
pronounced in some species, such as Gerres oyena, Siganus lineatus (both seagrass associated), and Scarus 
ghobban (coral-algae associated) (Figures 5 and 8a). In contrast, species such as Choerodon cyanodus and 
Lutjanus carponotatus show considerably less differences between wet and dry seasons indicating the potential 
for year-round recruitment (Figure 8a). A more detailed analysis of species-specific abundance patterns across 
bi-monthly surveys (coral habitat only) generally agreed with these seasonal patterns. Seven of the top ten most 
abundant species showed higher recruitment during wet season months (December to April, Figure 8b to f, and 
k). In stark contrast, three species (Dischistodus darwiniensis, Choerodon schoenleinii, Plectropomus maculatus 
(biindarral) and Chaetodon aureofasciatus (roola)) recruited in higher numbers during the dry season months 
(Figure 8g to j). 
 
Length-frequency distributions highlighted the seasonal and bi-monthly differences in juvenile fish abundance 
patterns, and allowed us to assess recruitment more directly by looking at patterns in the smaller juvenile size 
classes for four species with a good representation of length measurements (Figure 9). A clear recruitment pulse 
was identified for Choerodon cyanodus (igoolan) during March and April (end of the wet season), although some 
level of recruitment was present throughout the year (Figure 9a). Lutjanus carponotatus (joorloo) showed the 
strongest evidence of recruitment during October (end of the dry season) although a second, weaker recruitment 
pulse was observed during March and April (Figure 9b). Both Scarus species showed evidence of recruitment 
throughout the year with no clear recruitment pulses detected (Figure 9c and d). 
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Figure 8. Average juvenile abundance (MaxN ±SE) for the ten most abundant fish species in all habitats surveyed across wet 
and dry seasons (a), and proportion of total abundance per sampling period for the ten most abundant species found in coral 
reef habitat (b to k). Fish images are included for species that were the most important in discriminating juvenile fish 
assemblage structure across habitats sampled (see Figures 6 and 7). Sum MaxN represents the total number of fish identified 
in coral reef RUVs across the six time periods surveyed.  
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Figure 9. Length-frequency distributions according to the six bi-monthly periods surveyed for four species for which length 
data were best represented throughout the year (a-d); shown are percent frequencies according to selected bins based on 
maximum juvenile total length (LT); n = sample size. Note the different scales along the Y-axis for Scarus ghobban. Length-
frequency data represent length measurements gathered at all habitats surveyed; note that Dec-15, Feb-16, May-16 and 
JulAug-16 contain only coral reef data. 
 



Key Ecological Processes in Kimberley Benthic Communities: Fish Recruitment 

 

 Kimberley Marine Research Program  |  Project 1.1.2a 19 
 

3.5 Species accumulation curves and sampling effort 

The accumulation of species with increasing sampling effort (no. of RUVs) showed no asymptote at any level of 
sampling suggesting that some latent diversity remains in all habitats (Figure 10). Among habitats, sampling effort 
produced fairly similar numbers of species (Figure 10a, Appendix 3). Coral habitats recorded the highest species 
diversity followed by seagrass habitats (Figure 10a, Appendix 3). Similarly, species accumulation curves between 
wet and dry seasons showed no real marked point at which it was obvious that replication is sufficient to 
encompass >90% of overall diversity (Figure 10b). Sampling effort produced similar numbers of species between 
seasons, with slightly higher number of species recorded during the wet season (Figure 10b, Appendix 4). 
 

 
 

Figure 10. Species accumulation curves showing the number of unique species identified according to the number of RUV 
samples obtained at each of the five main habitats sampled (mangrove, seagrass, algae, coral and inter-tidal rockpools; a), 
and wet vs. dry seasons (b).  
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4 Discussion and Conclusions 

This study has documented the spatial and temporal patterns of fish recruitment in the Cygnet Bay and Sunday 
Island group and addressed several key objectives: 

1. Develop cost-effective techniques suitable to the Kimberley marine region that, wherever possible, allow 
direct comparisons with other data-sets in Western Australia 

We identified and developed stereo remote underwater video systems (stereo-RUVs) to optimally survey and 
monitor fish recruitment at the different shallow water habitats identified in the western Kimberley. Specific 
camera requirements and design for sampling small fish recruits with this baitless stereo-video method are 
described in methods section 2.2. Stereo-RUVs were suitable for deployment at all habitats safely (without 
divers), were repeatable, provided a permanent record, and could be easily deployed in a reasonable timeframe. 
Our trials further indicated that stereo-RUVs were efficient in providing precise estimates of abundance and 
acceptable levels of diversity, when compared to the eight other techniques trialed (i.e. rotenone, box trawls, 
drop cameras, underwater visual census (transect, stationary and block), patch reefs and pearling panels; see 
Depczynski et al. 2015). A potential downside of the method is the post processing time needed for video 
analyses after initial data collection, but this time can be reduced considerably by focusing on the most abundant 
and representative species recruiting to the region (see objective 2 below). We recommend this focused 
approach to video analyses for future recruitment monitoring in the Kimberley via stereo-RUVs.  

It is important to note that the deployment of RUVs requires reasonably clear waters and is highly dependent on 
tides in the Kimberley region. This study was conducted in a relatively clear region of the western Kimberley, 
after careful consideration of the local tidal regimes. Extension of these sampling methods to areas further east 
in the Kimberley which are typically turbid, will require previous evaluation of local conditions to determine 
feasibility. This will be crucial for direct comparisons between similar datasets for the region, given that the 
estimates for abundance from stereo-video techniques are based on the conservative measure of MaxN. 
Therefore, comparison with recruitment estimates from other methods may not be appropriate. 

2. Provide baseline quantitative information on levels of fish recruitment across a gradient of commonly 
available Kimberley habitats 

Remote underwater video was moderately successful in revealing fish recruitment in the study area, with recruits 
detected in more than 40% of all species recorded in the RUVs, allowing us to gather baseline quantitative 
information of recruitment at five different shallow water habitats: mangroves, seagrass, algae, coral reefs and 
inter-tidal rockpools. However, detected abundance of recruits was very low for most species, with 88% of total 
juvenile abundance contributed by only 12 species, and 39% of total juvenile abundance represented by a single 
species - Choerodon cyanodus (igoolan). Note that many of these 12 species are those of greatest importance to 
the Bardi Jawi community in terms of diet and cultural significance (see results section 3.1). The reasons for this 
generally low detected diversity and abundance are not known, but a combination of variables may be 
responsible including environmental, seasonal, biological/behavioural and methodological. For example, strong 
tidal fluxes in the region, together with high input of sediments and low salinity may affect larval connectivity 
and survival (Holliday et al. 2011). The Sunday Strait, directly to the east of the Sunday Island Group, has been 
found to be a potentially important barrier to larval dispersal, at least in some species (Berry et al. 2016). In 
addition, although deemed to be the most versatile and safest monitoring method across all habitats in the area 
(Depczynski et al. 2015), the capacity for RUVs to detect fish recruits is limited by factors such as water visibility 
and the cryptic nature of many juvenile fishes, including those that bury under soft sediments (e.g. wrasse Choat 
& Bellwood 1998). Therefore, recruits might be difficult to detect, especially in weed or mangrove habitats 
(Wilson et al. 2010, Evans et al. 2014) or recruit to deeper areas offshore. Finally, during 2016 water temperatures 
were extremely high with the hottest sea surface temperate anomalies on record, resulting in widespread coral 
bleaching in northern Australia (Bureau of Meteorology 2017); this is likely to have impacted fish recruitment 
and survival (e.g. Pankhurst & Munday 2011), potentially leading to underestimates of typical recruit abundance 
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in Cygnet Bay and the Sunday Island group. Furthermore, interannual variability in recruitment is typically very 
high (Doherty 1991, Sampey et al. 2004, Trip et al. 2014). For these reasons, future monitoring to examine 
recruitment processes in more detail, assess interannual variability and responses to local environmental drivers, 
is suggested. 

3. Examine seasonal trends in fish recruitment for selected important species 

Recruitment was strongest during the wet season across all habitats and for nearly all species, although there is 
evidence for some level of recruitment during both seasons for at least some species (e.g. Choerodon cyanodus). 
Warm water temperatures are known to promote gonad development, larval growth and survival (Takahashi et 
al. 2012) and where seasonal differences in light and temperature are pronounced (e.g. subtropical and 
temperate seas) fish typically recruit during the summer months (Wilson et al. 2010, Cure et al. 2015). Although 
seasonal differences in sea temperature in the Kimberley are generally small (~2 ⁰C, Ivey et al. 2016), these might 
still promote greater recruitment and survival during the warmer water months of the wet season (November to 
April). In addition, higher freshwater input during the wet season could increase the quantity of planktonic food 
available for fish recruits to feed on (De Robertis et al. 2003). 

Unsurprisingly, our results also suggest that season is unlikely to be an exclusive driver of patterns in recruitment. 
Models that incorporate both season and habitat provided the strongest predictor of recruitment.  This is 
expected because, among other things, habitats change from season to season (see point 4 below), and also 
because the influence of seasonal patterns are more evident in some habitats than others. Species-specific 
patterns also need to be taken into consideration, with some species apparently recruiting in only one season 
and/or a single habitat. 

Our results appear to correlate strongly with traditional fishing knowledge and management. Some of the species 
considered most important to the Bardi Jawi community (e.g. Acanthurus grammoptilis, Choerodon cyanodus, 
Lutjanus carponotatus) are species that we have identified as having year round recruitment. These species are 
the mainstay of Bardi Jawi fishing and the community recognises that they can harvest year round without 
adversely affecting stocks (Smith 1997). There are exceptions. Some species of cultural significance to the Bardi 
Jawi community recruit most strongly in the wet season. For example, one of the most sought after species, 
Siganus lineatus (barrbal), is mostly targeted when they are ‘fat’ during the dry season (Smith 1997). This is during 
reproductive quiescence, when the fish accumulate fat stores in preparation for the next spawning season and 
are expected to hold higher levels of nutrients. While fish with more fat are more desirable, discussions with 
members of the Bardi Jawi community (see acknowledgements) demonstrate that this is also a deliberate 
method of avoiding the spawning season and conserving local fish stocks (see Rouja et al. 2003). 

4. Determine the relative importance of representative habitats to fish recruitment processes 

We identified aspects of both habitats and locations that promote juvenile fish diversity in the Kimberley region. 
The presence of a variety of coastal habitats in close proximity to each other creates a mosaic of recruitment 
habitats, food resources and environmental conditions, which allow species with different ecological 
requirements to successfully settle into the region. Furthermore, the presence of areas with high coral cover 
clearly promotes a greater abundance and species richness of juvenile fishes, as well as intermediate levels of 
consolidated substrates such as bedrock and boulders. 

Different habitats clearly provide for different fish recruitment patterns, both in terms of species composition 
and abundance. Although some habitats tend to have higher abundance and diversity of fish recruits, there are 
differences in the type of fish that recruit to these habitats. For example, although mangroves and seagrass beds 
have lower diversity than coral reefs, some of the species important for local Bardi Jawi and recreational fisheries 
appear to recruit exclusively to just one of these habitats (e.g. Lutjanus argentimaculatus (maarrarn) to 
mangrove, and Siganus lineatus (barrbal) to seagrass beds). Therefore, conservation planning needs to recognize 
that all these habitats contribute to the overall pool and diversity of the Kimberley’s fish fauna, are potential 
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nurseries and warrant some level of protection, particularly to ensure sustainability of local fisheries resources.  

However, the similarity in species assemblages and total juvenile abundance between algae, coral and intertidal 
rockpool habitats, suggests that these habitats can be united as one sampling unit of coral-macroalgal reef. This 
united sampling unit is complex because it represents a spatial mosaic of dominant benthic cover as well as a 
seasonally temporal continuum of algal cover associated to growth and senescence life history patterns. This 
united habitat would be ideal for monitoring recruitment strength because several of the most abundant and 
fishery-important species in the region are best represented here (e.g. Choerodon cyanodus (igoolan), Lutjanus 
carponotatus (joorloo)). 

5. Assess possible biodiversity hotspots and population strongholds for juvenile fishes 

We were able to identify which aspects of locations and habitats promote species diversity, but weren’t able to 
determine particular locations which could be considered a biodiversity hotspot. One of the reasons behind this 
is that sampling limitations didn’t allow us to survey all habitats evenly at all locations, and therefore a 
comparison of diversity and abundance patterns according to locations was not appropriate. Nonetheless, our 
findings suggest that season and habitat differences are the most important indicators of juvenile fish diversity 
and abundance and that some level of protection of nursery grounds from different habitat types particularly 
during the wet season, would be ideal for the conservation of biodiversity and juvenile fish populations at the 
location level. Our analyses indicate that these factors (habitat and season), are more important than just 
location as determinants of juvenile recruitment patterns. 

6. Implications for future monitoring studies 

We have established initial monitoring sites for juvenile fish recruitment in representative habitats to form the 
basis for future long-term monitoring in the southern Kimberley region, and provided baseline data including 
species important for local and artisanal fisheries. Ideally, greater replication and complete replicate blocks 
would allow a better comparison between locations and habitats (see Table 1). However, sampling in the 
Kimberley is challenging due to strong tides and low visibility and deployment and retrieval of equipment is often 
limited to small windows of time, or delayed for extended periods. 

Comparison of the seasonal and bi-monthly RUV datasets indicated that sampling during the end of the wet 
(March-April) and dry seasons (October) was appropriate for capturing temporal variation in recruitment. 
However, any future monitoring of fish recruitment should be concentrated during the wet season when 
abundances are at their maximum across nearshore habitats in the Kimberley region.  

The spatial and temporal variability of the united sampling unit of ‘coral-macroalgal reef’ necessitates treating 
this as a continuous variable rather than a categorical one. The implication of this is that a stereo-RUV unit can 
effectively be dropped anywhere in this habitat at any time with no a priori expectation of the dominant habitat 
type because it can be quantified from the video a posteriori. This simplifies future monitoring in this particular 
habitat mosaic and requires less expertise or habitat appraisal by the team deploying the RUVs. 

Remote underwater video (RUV) was the most appropriate for the region, as determined by a pilot study 
(Depczynski et al. 2015). However, accurate identifications are the basis of most biological and ecological studies 
and this is not always possibly with remote video techniques, particularly where individuals are small in size (e.g. 
juveniles), closely related species are visually very similar and visibility is low. While every care was taken to 
correctly identify individuals in the present study, the relatively high number of ambiguous identifications (e.g. 
to sp. or spp.; Appendix 2) demonstrates the limitation of this method. In saying that, the twelve species 
responsible for driving separation between habitats, as determined by the dBRDA analysis, are all generally easy 
to identify from video and confidence in our identifications of these species is high. Future video-based fish 
recruitment monitoring in the region should focus on these important and identifiable species to streamline 
efforts. 
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