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Executive Summary  

Concentration and location of suspended sediment is typically monitored by (1) direct water sampling, (2) in situ 
sensors using optical and acoustic methods or (3) remote sensing techniques. Each sampling and observation 
method is based on different physical and optical assumptions or models, and thus the results, although usually 
highly correlated, may be reported in a variety of related, but different, geophysical units. Even if the results are 
reported in the same units, the values can be different due to the effects of different spatial, temporal and 
measurement protocols.  

A field program was undertaken during a large scale capital dredging program near Onslow, northwestern 
Australia (the Wheatstone Project) to collect in situ total suspended solids (TSS) concentration and coincident 
optical data. These data have been used to develop and test relationships between surface reflectance and TSS, 
leading to: 

• Develop and test relationships between surface reflectance and TSS, leading to the development of 
remote sensing algorithms applicable to MODerate-resolution Imaging Spectroradiometer (MODIS), 
Landsat and WorldView-2 satellite data.  

• Develop a model of spectral attenuation of light in turbid waters as a function of TSS. This model has been 
applied to MODIS TSS data to produce maps of relative light intensity at the substrate.  

• Provide inputs to, and to help validate, modelling of plume dynamics, reported in Sun et al. (2018). 

In this study we report on the development, testing and application of a Semi Analytic Sediment Model (SASM) 
TSS algorithm (see also Dorji and Fearns 2017). When compared against many other remote sensing TSS 
algorithms reported in the literature (n=76) the SASM algorithm developed ranks equal-top with a small number 
of algorithms from the past decade in terms of their ability to produce accurate results over a range of TSS 
concentrations and a range of water conditions.  

We also report on a preliminary time series analysis of MODIS remote sensing data based on determining long 
term (10 year) baseline conditions, then calculating deviations from this baseline, reported as anomalies, to 
describe the spatio-temporal patterns in TSS load and location in response to dredging and storm events. The 
anomalies clearly highlight the impact of dredge operations, river outflow events emanating from the Ashburton 
River, resuspension of sediment due to storms, as well as providing a representation of the spatial extent of 
influence of these events. 

Considerations for predicting and managing the impacts of dredging 
The Western Australia Environmental Protection Authority (2016), in the document Technical Guidance, 
Environmental Impact Assessment of Marine Dredging Proposals, describe ‘…the impact prediction and 
assessment framework that the EPA expects proponents and consultants to use so that prediction of the extent, 
severity and duration of impacts to benthic habitats associated with significant dredging activities are presented 
in a clear and consistent manner…’. The EPA believes the work of the WAMSI Dredge Science Node ‘…should lead 
to more rigorous and timely assessment and more efficient and cost-effective monitoring and management…’. 

Although this work did not specifically undertake a time and cost analysis of water quality monitoring methods, 
we feel confident in claiming that remote sensing methods of monitoring TSS and water turbidity are timely and 
cost effective when compared to in situ sampling. However, environmental agencies, scientists and other users 
are faced with many TSS algorithms published in the literature. Although algorithms are typically published with 
an associated uncertainty, and information on the development and applicability of the algorithm, it is potentially 
quite confusing and difficult to select the most appropriate algorithm for a region, and difficult to assess the 
accuracy of products derived using the algorithm. We have analysed over 70 remote sensing TSS algorithms 
published over the past 10 years, showing the accuracy of the TSS products for a realistic range of sediment 
types, sediment concentrations and water types. This work will help guide managers in selection of algorithms, 
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provide an indication of the expected accuracy, and provide a framework for comparing new algorithms. 

The EPA (2016) lists the three principal sources of sediment introduced to the water column during dredging as 
being the impact of dredging equipment with the seabed, overflow of sediment during loading of dredged 
material, and disposal of dredge spoil. We could speculate that an indirect source associated with dredging is the 
resuspension of sediment from dredge spoil ground or regions of disturbed/settled sediment associated with 
dredge operations. Analysis of remotely sensed MODIS TSS images, where we map TSS anomalies compared to 
a long term baseline clearly highlights turbid events associated with specific locations, including the Ashburton 
River, the dredge operations and the spoil ground east of Thevenard Island. The spatial extent of turbid plumes, 
the duration and timing of events, and the detection of ‘low level’ events relative to natural levels is only 
practicable with the spatial coverage of remote sensing. In particular, remote sensing is likely the only source 
of long term (10+ years) historical TSS and water turbidity information for most locations. Time series analysis 
of consistently produced remote sensing products has elucidated the spatial and temporal patterns associated 
with dredge activities, river outflow and storm events. The analysis provides information on the spatial range of 
the impact of plumes from a source, the time that sediment may remain in suspension above background levels, 
an indication of the natural variability and the baseline conditions.  

One of the well-known indirect effects of dredge generated sediments on benthic communities is decreased light 
transmission through the water column, reducing light levels available for benthic primary producers. The 
spectral light at depth maps developed within this project are applicable to studies of the impact of turbid 
plumes on benthic photosynthesising organisms. 

This study has also shown that it is not only the amount of light (quantity) that is important, but also the 
spectral nature of the light (quality). We have developed relationships between water column TSS levels and 
the spectral attenuation of downwelling light for the Wheatstone area. These spectral relationships have been 
used to model the full visible spectrum, enabling estimates of the relative intensity of PAR at the substrate, as 
well as providing physically based estimates of the change in the spectral nature of the light field. This 
information is very useful for studies examining the effects of suspended sediments on the physiology of benthic 
primary producers (for example developing water quality thresholds) where conditions are recreated in the 
laboratory (ex situ studies). 

Section 3.1.2 of EPA (2016) ‘Background Environmental data’, discusses the importance of baseline data sets, 
including underwater light climate and TSS concentration. Baseline underwater light climate and TSS 
concentrations can be efficiently and cost effectively derived from long term archives of MODIS remote sensing 
data. Also, this is likely the only source of long term baseline data. 

Section 3.3 of EPA (2016) ‘Generating predictions’, suggests that predictions of water conditions and impacts are 
typically based on the outputs of predictive physical and ecological models. As the archive of remotely sensed 
data grows it may be used in conjunction with predictive models to generate statistics describing the spatio-
temporal patterns, potentially to test and or train models, and in the calibration and validation of models, and 
to directly provide information that may aid in predictions. 

Section 3.4.1 of EPA (2016), ‘Impact zonation scheme’, defines the outer limit of the zone of influence (ZoI) as 
the composite of all the predicted maximum extents of dredge plumes beyond which dredge-generated plumes 
should not be discernible from background conditions at any stage during the dredging campaign. Also, it 
suggests that reference sites should ideally be located outside the ZoI. The remote sensing anomaly studies have 
demonstrated the ability of remote sensing data to map the extent of the ZoI post dredging, and to include a 
quantitative description of the strength of the anomaly, and the variability of the background conditions.  

Section 3.4.3 of EPA (2016), ‘Accounting for predictive uncertainty’, describes the need to consider the 
uncertainty in model-based predictions. An understanding of the natural variability would be important to help 
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define the size of the perturbations of the model inputs, as well as the sensitivity of the impact detection needed 
to account for changes above the natural variability. Historical remote sensing data includes high turbidity 
episodic events (cyclones, floods etc.) to help provide an estimate of the variability caused by such events.  

Section 3.5.3 of EPA (2016), ‘A risk-based environmental monitoring and management framework’, includes 
turbidity or light attenuation coefficients as examples of primary indicators within an environmental monitoring 
program. Although these variables are typically measured using in situ methods based on moored instruments 
or frequent sampling, we have shown that remote sensing data can provide the same measures, with the added 
advantage of the spatial context provided by remote sensing imagery. We have shown that the comparison of in 
situ data and remote sensing data can appear to suggest excessive uncertainty, however some of the differences 
can be attributed to fundamental differences in the methods of measurements. In situ measurements provide a 
very high confidence measure of a localised water mass and the remote sensing data provide a spatially averaged 
measure where the scale of the spatial averaging can impact the reported results. A key point with respect to 
using remote sensing technologies is that the methods and sensors used to monitor water quality conditions 
need to be consistent for the duration of the monitoring program.  

Key residual knowledge gaps  
This work has advanced the science of remote sensing of TSS, enabling production of maps of TSS and derived 
products including spectral attenuation, spectral light at the substrate and relative intensity of PAR at the 
substrate.  

The analytical component of the SASM TSS algorithm is based on an assumption of relatively uniform TSS 
distribution within the near-surface water column. Conversely, the TSS concentration derived from the SASM is 
assumed to be distributed vertically within the water column, or at least considered vertical with the near-surface 
water column. The depth of this near-surface layer depends upon the water clarity and the wavelength of the 
remote sensing channel employed, but in general can be considered “the top few metres”. There is no way to 
use optical remote sensing to directly infer the concentration of TSS below this near-surface layer. 

Remote sensing estimates of water column spectral light attenuation are sometimes simply empirically derived, 
or indirectly derived from remotely sensed TSS concentration. For this work the spectral attenuation of light was 
measured in situ then used to derive an empirical model based on in situ TSS measurements. In practice, the 
SASM is used to determine water column TSS, then the empirical light attenuation model is used to infer the 
water column light attenuation. The inherent uncertainty in the SASM TSS product is therefore incorporated in 
the estimate of light attenuation. For this work we could have derived an empirical relationship of light 
attenuation based on surface reflectance measurements, thus a remote sensing method to directly estimate light 
attenuation. However, this approach would not necessarily produce a superior result when compared to the 
remote sensing reflectance, TSS concentration, light attenuation approach. We considered it sensible to have 
TSS and light attenuation products more closely coupled by deriving the light attenuation from the remotely 
sensed TSS concentration. Some of the in situ data collected in this project could be used to investigate an 
empirical remote sensing light attenuation algorithm. 

This work investigated the robustness of over 70 published TSS algorithms, but the investigation was specifically 
targeted at the confidence in the TSS concentration product. The confidence in the light-at-depth products was 
not investigated with the same rigour and degree of analysis. Notwithstanding the inherent uncertainty in the 
remotely sensed TSS, the uncertainty in light-at-depth estimates could be investigated using a similar approach 
to the TSS study. That is, use a radiative transfer simulation to model the water column light field for a range of 
parameters including TSS concentration, sediment type and sun angle. 

A key issue with respect to estimating the light-at-depth is the assumption of uniform vertical distribution of TSS. 
A significant impact on the uncertainty of this estimate would be caused by deviations from this assumption.  
In situ measurements of TSS vertical distribution displayed considerable variability, with sediment plumes 
ranging from well mixed to highly stratified. Although there are currently no methods to use optical remote 
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sensing to determine the vertical distribution of sediment, there is potential to utilise a hydrodynamic model and 
radiative transfer model in parallel with the remote sensing data to iteratively improve the remotely sensed 
estimates of TSS and light attenuation products. 
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1 Introduction  

Large scale coastal dredging operations can produce extensive plumes characterized by portions with very high 
suspended sediment concentrations, extreme turbidity, low light levels at the benthos and significant amounts 
of sediment deposition. These turbid plumes can cause significant damage to the marine environment so large 
scale dredging proposals are often subject to environmental impact assessment (EIA). The assessment process 
requires proponents to make scientifically sound predictions of the likely extent, severity and persistence of 
environmental impacts. Prediction of the transport and fate of sediments, and the impact of these sediments on 
the environment, is typically achieved by using coupled hydrodynamic, wave and sediment transport models.  

Once dredge operations are established, the impacts of dredge activities are monitored to assist proponents in 
understanding the environmental impacts and to inform and guide environmental management programs. 
Remote sensing technologies are increasingly being adopted to augment the in situ monitoring programs, 
providing comprehensive overviews of the spatial extent and behaviour of dredge-generated plumes in near 
real-time. Where archives of remote sensing data are available, these can also provide important information 
for determining baseline and pre-dredge water quality conditions, and potentially also provide data for 
development and validation of the hydrodynamic models.  

Data obtained from remote sensing instruments are processed to derive a geophysical product such as TSS. To 
date there are more than 70 published TSS algorithms for users to select from, with the majority based on 
empirical relationship(s), although in recent times semi-analytical algorithms have been developed. The TSS data 
may be further analysed or incorporated with other information to derive higher level products, such as 
combining bathymetry, remotely sensed TSS and a model of light transmission to determine the intensity and 
spectral quality of light-at-the-substrate. Knowledge of light-at-the-substrate is important for understanding the 
potential impact of dredge plumes on benthic photosynthesising organisms.  

The key management issue addressed by this work is improvement in the efficiency and effectiveness of the 
monitoring of passive dredging plumes to support the EIA and management activities associated with dredging. 
A secondary issue is the improvement of numerical models by provision of remote sensing data for optimisation, 
testing and validation. 

The primary objectives of Project 3.2 are to: 

1. Characterize the physical and optical properties of sediment suspensions in dredge plumes to allow use 
of TSS as inputs to models; 

2. To map the dredge-generated plume from as close as possible to the source dredge to the outer limit of 
the passive plume; 

3. To provide data to optimize and validate plume modelling at EIA and monitoring stages; 

4. To assess the spatial and temporal variability (~10 years) of background suspended sediment loads using 
archived remote sensing data and in situ data;  

5. To assess and validate algorithms for estimating benthic light field; and 

6. Analyze archived remote sensing data with the aim of assessing the frequency of resuspension from 
shallow water dredge material placement sites by the local current and wave regime. 

A field program was undertaken to collect coincident TSS and spectral ocean reflectance data. These data were 
used to develop and test a semi-analytical TSS algorithm. The field program also included measurement of plume 
extent and vertical structure using various direct sampling, optical and acoustic methods. These data were also 
used to support the numerical modelling of the passive plume (Sun et al. 2018). An overview of the results of the 
field program are presented in Chapter 3. 

Section 4 presents a brief description of the form of a semi-analytical TSS algorithm, a relationship between 
optical scattering and absorption of suspended solids and the ocean spectral reflectance. Following the brief 
description is a detailed report on the development of a semi-analytic remote sensing algorithm (SASM) for 
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estimating TSS, developed using field data collected during this project. The algorithm is developed here for 
MODIS and Landsat sensors, but is easily tuned and is applicable to any sensor with suitable spectral 
characteristics. The full paper associated with this Section is included in Appendix I. 

Dorji P, Fearns P, Broomhall M (2016) A Semi-Analytic Model for Estimating Total Suspended Sediment 
Concentration in Turbid Coastal Waters of Northern Western Australia Using MODIS-Aqua 250 m Data. Remote 
Sensing. 2016; 8(7):556 doi:10.3390/rs8070556  

Section 4.2 reports on the comparison of 76 TSS remote sensing algorithms, including MODIS and Landsat 
algorithms published in the past decade. The full paper associated with this Section is included in Appendix II: 

Dorji P, Fearns P. A. (2016) Quantitative Comparison of Total Suspended Sediment Algorithms: A Case Study of 
the Last Decade for MODIS and Landsat-Based Sensors. Remote Sensing. 2016; 8(10):810 doi:10.3390/rs8100810 

Section 5 presents examples of Light-At-Depth (LAD) products derived from remotely sensed TSS and spectral 
attenuation models derived from the field work collected in this project.  

Section 6 reports on the analysis of spatial resolution on remotely sensed TSS products. Results are based on up- 
and down-scaling pixel data from 250 m MODIS, 30 m Landsat-8 and 2 m Worldview-2 data. The full paper 
associated with this Chapter is at Appendix III. 

Dorji P, Fearns P (2017) Impact of the spatial resolution of satellite remote sensing sensors in the quantification 
of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia. PLoS 
ONE 12(4): e0175042. https://doi.org/10.1371/journal. pone.0175042 

Section 7 shows a time series of remote sensing products based on images of TSS anomalies compared to a 
baseline TSS and Section 8 presents discussion and conclusions. 

2 Materials and Methods 

2.1 Field program 

There were two major field programs undertaken, the ‘inshore’ field program (19-31 October 2013) and the 
‘offshore’ field program (9−20 June 2014). Additional sampling was also undertaken as part of a ‘voyage of 
opportunity’ as part of an Australian Institute of Marine Science (AIMS) field trip from 3−13 July 2015. 

The general aims of the field program were to collect data to help characterise the physical and optical properties 
of sediment suspensions associated with dredge activities. These data are useful as inputs to various models, 
including numerical transport process models and optical light attenuation and ocean reflectance models. The 
optical models are used to develop remote sensing methods for monitoring dredge plume characteristics such 
as TSS load, spatial extent, long term changes, and anomalies. 

The field data can also be used directly to help validate numerical and optical models. Sections 2.1.1 to 2.1.8 
below provide an overview of the field instrumentation, deployment and data collection methods. 

2.1.1 Water column profiles 

Vertical profile measurements of the water column were obtained on a grid of stations from the coast to what 
was considered to be the offshore extent of the dredge plume. Measurements at the grid of stations was 
completed within a day to obtain as close to a synoptic snapshot as possible. The instrument package on the 
rosette is shown in Figure 1. Conductivity, temperature and depth were measured using a Seabird SBE19 plus 
CTD, particle size distributions were measured using a Laser In Situ Scattering and Transmissometry 100x 
instrument (LISST) and a Hydroscat-6 was used to measure optical backscattering at 6 wavelengths plus 
fluorescence at 2 wavelengths. Profiles using a dual-channel hyperspectral radiometer were obtained separately 
at most of the rosette stations by manually lowering the instrument off the stern of the vessel. Descriptions of 
the instruments follow below. At most of the rosette stations water samples were also collected for subsequent 
filtering to determine TSS concentration. The typically mode of deployment was to let the rosette remain just 

http://www.wamsi.org.au/sites/wamsi.org.au/files/files/Dorji%20et%20al_%20%282016%29%20TSS%20in%20turbid%20waters%20off%20NW%20Australia.pdf
http://www.wamsi.org.au/sites/wamsi.org.au/files/files/Dorji%20et%20al_%20%282016%29%20TSS%20in%20turbid%20waters%20off%20NW%20Australia.pdf
http://www.wamsi.org.au/sites/wamsi.org.au/files/files/Dorji%20and%20Fearns%20%282016%29%20TSS%20algorithms%20for%20MODIS%20and%20Land-sat%20based%20sensors.pdf
http://www.wamsi.org.au/sites/wamsi.org.au/files/files/Dorji%20and%20Fearns%20%282016%29%20TSS%20algorithms%20for%20MODIS%20and%20Land-sat%20based%20sensors.pdf
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below the ocean surface for a few minutes to allow instruments to start, de-bubble and equilibrate their 
temperatures. The rosette was then lowered to sample depths where it would remain for a few minutes to allow 
collection of water with the Niskin bottles and collection of instrument data.  

Figure 1. Profiling rosette with LISST,  
SBE-19plus, Hydroscat-6 and Niskin bottles. 

2.1.2 Hydrorad data capture and processing 

The Hydrorad2 (http://www.hobilabs.com/cms/index.cfm/37/152/1269/1270/2025/165558.htm) is a 
submersible dual-channel hyperspectral radiometer. The Irradiance channel measures the downwelling solar 
signal at depth. The radiance channel measures the upwelling signal at depth. The optical measurements span 
the wavelength range 340−860 nm at sub nanometre increments. Each channel is connected to a sensor head 
by a 1 metre fibre-optic cable. 

The Hydrorad2 is used to measure the spectral light profile through the water column by slowly lowering the 
instrument through the water column. Measurements are collected continuously during both the up and down 
casts. 

The proprietary software Radsoft was used to produce Irradiance (E(λ)), radiance (L(λ)), timestamp, depth, 
temperature, voltage and integration time from the raw profile data. These data were used to calculate the 
spectral attenuation coefficient for downwelling light, Kd(λ), using the relationship: 

𝐸𝐸(𝜆𝜆, 𝑧𝑧) = 𝐸𝐸(𝜆𝜆, 0)𝑒𝑒𝑒𝑒𝑒𝑒 (−𝐾𝐾𝑑𝑑(𝜆𝜆), 𝑧𝑧) (1.) 

Where: E(λ,z) is the spectral downwelling irradiance at depth z, and E(λ,0) is the spectral downwelling irradiance 
just below the ocean’s surface. Noisy data near the surface and near the sea floor were removed prior to 
calculating K. The parameter K is key to understanding the changes in light levels in a water column due to depth 
and the concentration of optical constituents, such as TSS. 

2.1.3 Hydroscat data capture and processing 

The Hydroscat-6P (HS-6P) is a submersible backscatter and fluorescence sensor. Spectral backscatter, 𝑏𝑏𝑏𝑏(𝜆𝜆), is 
measured at 6 wavelengths (420, 442, 470, 510, 590 and 700 nm) and fluorescence at 2 wavelengths (510 and, 
700 nm). The instrument consists of a number of paired light sources and detectors where the direction of 
emitted light and the direction of view of the detectors intersect at 140° (see Figure 2). The volume scattering 
function (VSF) varies least (for varied oceanic conditions) in the range of backscatter angles between 110−160° 
(Maffione and Dana, 1997) so a fixed measurement angle of 140° is considered suitable to estimate total 
backscatter. 

http://www.hobilabs.com/cms/index.cfm/37/152/1269/1270/2025/165558.htm
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The proprietary instrument data processing software HobiSoft was used to convert the raw instrument data to 
backscatter, fluorescence, depth and timestamps for each set of measurements. 

The HS-6P was deployed during the October 2013 campaign on the rosette along with a CTD, the LISST and Niskin 
bottles, as shown in Figure 1.  

 

 

Figure 2. The Hydroscat-6P showing the pairs of light source 
and detector windows 

(http://www.hobilabs.com/cms/index.cfm/37/152/1253/12
66/index.html). 

 

2.1.4 In situ water sample collection and sediment filtering 

Water samples were collected to measure the TSS concentration across the test area, which varied from highly 
turbid near the shore and dredge operations, to a more ‘normal’ background level. When practical, samples were 
collected by hand, just below the water’s surface and as close as possible to the DALEC (see Section 4.1.5.1). 
When hand sampling was not practical, water was collected by Niskin bottles mounted on the rosette. Samples 
were collected at a depth of 0.5 m and at a depth approximately 1 m above the sea floor. The samples were 
collected on the downcast to minimise the potential mixing of stratified water. The collected water, when 
brought to the surface, was evacuated into large buckets. The water was agitated in the bucket and sample 
bottles filled. The buckets were well rinsed with fresh water between rosette casts to reduce cross 
contamination. The time and GPS position was recorded for each station.  

The sample volumes were either 250 mL, 500 mL or 1 L, depending on the estimated turbidity of the water being 
sampled. The water samples were subsequently filtered through pre-weighed 47 mm GF/F glass fibre filters 
(nominal pore size 0.7 µm) under a low pressure vacuum. The sample bottles and the sides of the filter cups were 
rinsed with reagent grade water (milli-Q or deionised). The filters were finally washed with a 10−20 mL volume 
of reagent grade water to dissolve salt remaining in the wet filters. 

The GF/F filters were pre-prepared in the laboratory by drying in an oven at approximately 80°C for 24 h. The 
filters were then weighed using a precision balance (capable of weighing to 0.0001 g) directly upon removal from 
the oven. As soon as was practicable after the sample filtering had been conducted, the GF/F filters were 
returned to the oven to dry and the weighing procedure repeated. The difference in the mass of the pre-weighed 
filters and the filtered sample, divided by the volume of the water sample, represents the TSS concentration of 
the water sample.  

2.1.5 Underway surveys 

Underway measurements were undertaken during both the October 2013 and July 2015 field programs. In the 
underway mode of operation the LISST was equipped with a flow-through cell and run on the deck using surface 
water pumped continuously through a de-bubbler. An ac-s spectrophotometer (see Section 4.1.5.2) was also run 

http://www.hobilabs.com/cms/index.cfm/37/152/1253/1266/index.html
http://www.hobilabs.com/cms/index.cfm/37/152/1253/1266/index.html
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in series with the LISST as part of the underway system. The LISST and ac-s were placed in a water bath on deck.  

A hull mounted Sontek River Surveyor M9 ADCP, a dual-frequency ADCP with an additional vertical beam (0.5 
MHz) for precision velocity and depth measurements in shallow water was also run continuously during the 
underway surveys. During the underway surveys the Dynamic Above water radiance (L) and irradiance (E) 
Collector (DALEC) was mounted off the bow of the vessel (see description below). 

DALEC data capture and processing 

The DALEC is a hyperspectral three channel spectroradiometer, developed in-house by the Remote Sensing and 
Satellite Research Group (RSSRG) at Curtin University, and now available commercially 
(http://www.insitumarineoptics.com/dalec). 

 

 

Figure 3. DALEC deployed from survey vessel 
showing the position of the downwelling 
irradiance sensor (E), the upwelling radiance 
sensor (Lu) and the sky radiance sensor (Lsky). 

 

 

 

Figure 4. Illustration of the orientation of the 
DALEC sensors. The Irradiance sensor (E) views the 
sky hemisphere, the Lsky sensor views a small 
solid angle 40° from nadir and the Lu sensor views 
a small solid angle of the ocean surface 40° from 
the vertical. 

 

Figure 3 and Figure 4 show the method of deployment for the DALEC. The instrument is oriented 135° in azimuth 
from the sun and the Lu and Lsky sensors are set at view angles of 40° from the vertical. Mobley (1999) suggests 
these angles as the best compromise for the three measurements being taken, E, Lu and Lsky. 

Hyperspectral measurements from each of the three channels are taken with individual spectrometers of the 
same type, with each sensor in the instrument calibrated for either radiance (L) or irradiance (E). 

During operation each channel runs independently of the others. This is important, as each channel is able to 
automatically adjust the integration time so that maximum sensitivity is maintained independently for each 
channel. The DALEC may be operated continuously so while conducting transects or while on-station, hundreds 
if not thousands of spectral measurements can be collected over the course of the day. Each measurement from 
each channel is time stamped so that the three measurements can be binned by time and combined to produce 

http://www.insitumarineoptics.com/dalec
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a remote sensing reflectance (𝑅𝑅𝑟𝑟𝑟𝑟) product. Each channel collects spectral information in 256 bands ranging from 
approximately 300 nm to 1130 nm. 

In simple terms, the spectral measurements from each channel were combined to give an estimate of the remote 
sensing reflectance, Rrs (Mobley, 1999, Lee et al. 2010): 

𝑅𝑅𝑟𝑟𝑟𝑟 = �𝐿𝐿𝑢𝑢−𝜌𝜌𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠�
𝐸𝐸

    (2.) 

where 𝜌𝜌 is a proportionality factor dependent on viewing geometry, wind speed and wavelength. 

 

Data capture and processing of the ac-s 

The ac-s (where a represents absorption and c attenuation) is a type of hyperspectral transmissometer, made by 
Sea-Bird Scientific (http://www.seabird.com/ac-s). The instrument consists of two transmission tubes that are 
filled with the water to be sampled, either by submerging the ac-s in the ocean or by pumping sea water through 
the tubes via a deck pump system. Each of the transmission tubes has light sources at one end and detectors at 
the other. One tube, used for measuring total spectral absorption (a(λ)), is lined with a highly polished and 
reflective quartz coating. The second tube, used for measuring total beam spectral attenuation (c(λ)), is lined 
with highly absorbing matt black plastic 

 
Figure 5. Illustration of the basic lay out of the ac-s instrument. Note that the model used for the 
first field deployment at Onslow in October, 2013 had a 10 cm path length which is more suited to 
turbid water than the 25 cm path length. 

 

Figure 5 shows the arrangement of the instrument. The flow tubes are removable so that both the tubes and the 
exposed optics that sit at either end of the tubes can be cleaned. The illustration shows the water inlets and 
outlets at the ends of the tubes. During operation, either when submerged in the ocean or operating on-deck, 
water is pumped through the tubes. The pumped water needs to free of bubbles so when operating in deck mode 
a de-bubbler is recommended. 

http://www.seabird.com/
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Figure 6. The ac-s as it was deployed during the field work campaign in October, 2013. The ac-s is connected 
serially with the LISST. The DH-4 is a submersible data logger compatible with Wet labs instruments. 

 

Figure 6 shows how the ac-s was deployed in the on-deck underway mode during the October field campaign. 
The LISST (introduced below) was connected in series with the ac-s so that the same water was sampled by each. 
The ac-s was tilted upwards towards the outlet end of the flow tubes to aid in removing any bubbles that may 
have entered the flow circuit. The combined ac-s and LISST system was connected to a water intake supply on 
the research vessel.  

The ac-s instrument files were processed by the Wet Labs proprietary software to output external temperature, 
absorption and attenuation at regular time-stamped intervals. 

The beam spectral scattering coefficient, b(λ), was calculated by subtracting the spectral absorption coefficient 
from the spectral beam attenuation coefficient: 

𝑏𝑏(𝜆𝜆) = 𝑐𝑐(𝜆𝜆) − 𝑎𝑎(𝜆𝜆) (3.) 

The ac-s user’s manual (WET Labs, 2013) describes 3 corrections that must be included in the processing of the 
raw instrument data; corrections for changes in the absorption and attenuation coefficients of water due to 
changes in temperature and salinity, and correction for a scattering error in the absorption tube (a) as some of 
the photons are lost to the system (i.e. backscattered photons). The temperature and salinity corrections are 
described by: 

𝑎𝑎𝑚𝑚𝑚𝑚𝑠𝑠 = 𝑎𝑎𝑚𝑚 − [𝜓𝜓𝑡𝑡 ∗ (𝑡𝑡 − 𝑡𝑡𝑟𝑟) + 𝜓𝜓𝑠𝑠𝑠𝑠 ∗ 𝑆𝑆]   (4.) 

and 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑐𝑐𝑚𝑚 − [𝜓𝜓𝑡𝑡 ∗ (𝑡𝑡 − 𝑡𝑡𝑟𝑟) + 𝜓𝜓𝑠𝑠𝑠𝑠 ∗ 𝑆𝑆]  (5.) 

where 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚and 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 are the absorption and attenuation of all suspended material in the water corrected for 
temperature and salinity, 𝑎𝑎𝑚𝑚  and 𝑐𝑐𝑚𝑚 are the pre-corrected measured absorption and attenuation values 
(proprietary data processing software outputs), t is the external or ambient temperature, tr is the reference 
temperature (external temperature when the instrument was calibrated), S is the water salinity and 𝜓𝜓𝑡𝑡, 𝜓𝜓𝑠𝑠𝑠𝑠, 𝜓𝜓𝑠𝑠𝑠𝑠  
are coefficients from Tables 2 and 3 in the ac-9 protocol document (SeaBird Scientific, 2011). 

The scattering error correction is as follows: 

𝑎𝑎𝑡𝑡(𝜆𝜆) − 𝑎𝑎𝑤𝑤(𝜆𝜆) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(𝜆𝜆) − 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚�𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟�
�𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚�𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟�−𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚�𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟��

∗ [𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚(𝜆𝜆) − 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(𝜆𝜆)] (6.) 

where 𝑎𝑎t(𝜆𝜆) − 𝑎𝑎w(𝜆𝜆) =  am(𝜆𝜆), the spectral absorption corrected for temperature, salinity and the absorption 
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tube, 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(𝜆𝜆) and 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚(𝜆𝜆) are as above (although wavelength is not explicitly shown above), and 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚�𝜆𝜆𝑟𝑟𝑒𝑒𝑒𝑒� 
and 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚�𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟� are as above but for a reference wavelength. Data processed for this work were corrected with 
a reference wavelength of 745 nm. 

In practice, a CTD should be deployed with the ac-s to allow for correction in a dynamic environment. However, 
CTD data were collected on-station but not during underway measurements, therefore the ac-s data were 
corrected using a constant salinity value. 

2.1.6 LISST sampling 

The LISST-100X (Sequoia Scientific), shown above in Figure 6, is a self-contained instrument that measures 
particle size distribution and total volume concentration of in situ suspended particles. The measurement 
principle is small-angle forward scattering laser diffraction: smaller and larger particles scatter light at larger and 
smaller (forward) angles, respectively, so that particle size and volume concentration can be calculated from the 
intensity of light scattered at different angles by suspended particles. This measurement principle is the same as 
common Malvern particle size analysers used in the laboratory; however, the LISST enables measurements of in 
situ particles without disruption, which is an essential feature for studying flocculated particles. The LISST has 
advantages over conventional transmissometers and optical backscatter sensors (OBSs) which cannot distinguish 
the changes of concentration and particle size, both of which affect transmitted or backscattered light intensity, 
but the LISST can separate the two effects. The LISST−100X used in the field experiment has an operational size 
range of 1.25−250 µm (Type B) and sampling rate of 1 Hz. 

2.1.7 Sediment coring 

Sediment cores were obtained using two types of corers depending on the conditions. In the first instance we 
deployed the piston corer shown in Figure 7a, which was lowered to the bottom using the CTD winch, left in 
place for a short period to allow the core tubes to penetrate, and then recovered. An example core is shown in 
Figure 7b. All the cores were photographed and then the overlying water siphoned off and the core sample 
placed into a sample bucket and frozen for later analysis. 

 

 

Figure 7. (a) Piston corer on deck, loaded 
and ready for deployment and (b) a typical 
core sample 

 

In some cases the piston corer failed to return a core and we deployed a drop corer, shown in Figure 8a, which 
would free fall to the bottom and then be recovered manually. An example core is shown in Figure 8b. These 
cores were also placed in a bucket and frozen for later analysis. A particle size analysis of the sediment samples 
collected in the cores was completed at The University of Western Australia (UWA). The samples were thawed 
and a dispersant added to break all flocs before analyzing in a Malvern Mastersizer 2000. 
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Figure 8. (a) Drop corer being recovered and 
(b) a typical core sample. 

 

2.1.8 Mooring 

We conducted near-bottom Acoustic Doppler Velocimeter (ADV) measurements near Ward Reef for 
approximately a week in order to investigate feasibility of estimating an in situ stress-resuspension relationship 
using an ADV, following Shimizu et al. (2005). The idea of the measurements is as follows. An ADV measures 
turbulent fluctuations of velocity components and acoustic backscatter (ABS), from which suspended sediment 
concentration of cohesive sediments can be inferred (MacDonald et al. 2013). Using velocity components and 
inferred suspended sediment concentration, we can calculate shear stress and turbulent suspended sediment 
flux (SS flux) (Kawanisi and Yosiki 1997; Fugate and Friedlichs 2002, 2003; Maa and Kwon 2007). Making ADV 
measurements near the bottom provides in situ proxies of bottom shear stress and resuspension rate.  

A mooring unit consisted of two ADVs and OBSs at 0.31 and 1.2 m above the bottom, and an upward-looking 
ADCP. We also planned to put a LISST on the mooring, but we could not use the instrument because of 
malfunction prior to the deployment. Deployment of the mooring is shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Mooring Deployment, where OBS = optical 
backscatter sensors, ADCP = Acoustic Doppler Current 
Profiler, Vector = Nortek vector single point acoustic 
current meter 
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Nortek vector 

The Nortek vector is a single point acoustic current meter capable of measuring waves and turbulent flow in 
three dimensions. An acoustic beam from a central transmitter is scattered by small particles in the water column 
and recorded by three receivers focussed on a small sampling volume 15 cm from the transmitter, as shown in 
Figure 10. The electronics measure the Doppler shift of the received signal which depends on the velocity of the 
scatterers in the sampling volume. The sampling rate is user-selectable and was set to measure velocity 
components and intensity of acoustic backscatter (ABS) at 16 Hz. The ADV measurements were made in an hourly 
burst mode with burst duration of ~30 minutes. The ABS was not calibrated to TSS thus results are reported in 
this document in arbitrary units (a.u.). From ADV measurements, we calculated bottom shear stress using inertial 
subrange fitting and the eddy correlation methods, and turbulent SS flux using the eddy correlation method. 

 

 

Figure 10. Nortek Vector 
velocimeter. The sampling volume 
is shown in red and the receivers 
are at the ends of the three arms. 

 

Campbell scientific OBS 

The Optical Back Scatter (OBS) instrument shown in Figure 11 transmits from a light source and measures the 
light scattered back to the sensor. The magnitude of the return signal depends on sediment concentration and 
particle size distribution, so the instrument needs to be calibrated using sediment samples from the 
measurement site to obtain reliable estimates of TSS. The OBSs were located to measure close to the sampling 
volume of the two vector current meters, and sampled at 1 Hz in the burst mode used for ADVs.  

 

 

 

 

 

 

 

 

Figure 11. Optical Backscatter Sensor. 
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RDI workhorse ADCP 

The Acoustic Doppler Current Profiler (ADCP) shown in Figure 12 works by transmitting ’pings’ of sound at a 
constant frequency into the water. As the sound waves travel, they scatter off particles suspended in the moving 
water, and reflect back to the instrument. Due to the Doppler effect, sound waves bounced back from a particle 
moving away from the profiler have a slightly lowered frequency when they return. Particles moving toward the 
instrument send back higher frequency waves. The difference in frequency between the waves the profiler sends 
out and the waves it receives is called the Doppler shift. The instrument uses this shift to calculate how fast the 
particle and the water around it are moving. Sound waves that hit particles far from the profiler take longer to 
come back than waves that strike close by. By measuring the time taken for the waves to bounce back and the 
Doppler shift, the profiler can measure current speed at many different depths with each series of pings. The 
ADCP was deployed on the mooring shown in Figure 9 and programmed to measure vertical profiles of velocity 
components and ABS every 5 min with 0.25 m vertical resolution. 

 Figure 12. RDI Acoustic Doppler Current Profiler (ADCP). 

 

2.2 Laboratory experiments 

Many of the instruments outlined above produce data related to concentration of TSS, turbidity, acoustic and 
optical properties. Whilst all of these are closely related, there are differences. We undertook an experiment to 
compare the data from optical and acoustic instruments in a controlled environment, and to consider differences 
between field measurements and those conducted during the tank-based experiments, reported in Project 3.2.2 
(Fearns et al. (2018)). 

2.3 Remote sensing data 

2.3.1 Processing MODIS to gridded TSS 

The raw MODIS data were processed on the NCI high performance computing system to produce daily-gridded 
TSS data, with subsequent processing and analysis carried out on a Curtin-based Linux server. The code base  
and workflows were based on developments associated with a project that studied dredge plume  
monitoring in shallow waters at Barrow Island, WA (Evans et al. 2012). The production of the TSS gridded product 
used 2 third party software packages, SeaDAS (https://seadas.gsfc.nasa.gov/) and MRTswath 
(https://lpdaac.usgs.gov/tools/modis_reprojection_tool_swath). SeaDAS was used to produce remote sensing 
reflectance from raw MODIS data using standard atmospheric correction methods implemented by the SeaDAS 
module L2gen. The atmospherically corrected remote sensing reflectance MODIS data were then processed to 
TSS concentration using the SASM TSS algorithm described in Section 6. The remote sensing reflectance data 
were used to produce true colour images. The TSS data were used to calculate daily water attenuation and light-
at-depth data and images.  

2.3.2 Analysis of MODIS TSS anomalies 

Daily MODIS TSS data from the Aqua archive (January 2003−December 2012) were processed into monthly, 
seasonal and yearly summaries. For each temporal instance, six different statistics were generated: (1) Pixel 



Plume Characterisation – Field Studies  

12 Dredging Science Node  |  Theme 3  | Project 3.2.1  

 

count, (2) Median, (3) Mean of the 90th percentile, (4) SD of the 90th percentile, (5) Maximum temporal value 
within the 90th percentile, and (6) Minimum temporal value within the 90th percentile. 

During data processing occasional extreme TSS values occur due to the TSS algorithm failing near cloud edges 
and anomalous reflectance values at some locations near the land/ocean boundary. In order to remove extreme 
values prior to the statistical analysis, the TSS data were treated to a tailing of 5% of the values at upper and 
lower extremes, leaving approximately 90% of the available data for analysis and without any change in the 
median value. 

Pixel count statistics were used to analyse the impact of tailing on the results and to determine a suitable 
threshold for tailing. A tailing threshold of 15 pixels was applied to all data. For locations with greater than 15 
pixels, the percentile of available data to be analysed ranged between 87% and 92%. When there were less than 
15 pixels, data were not subjected to tailing as the percentile of remaining data was considered too small. 

Yearly anomalies (year average minus 10-year baseline) and monthly anomalies (monthly average minus 10 year 
baseline) were generated to highlight the spatio-temporal extent of impacts due to storms, river outflows or 
dredge events on the TSS load in the Pilbara waters. 

3 Field program results 

3.1 Inshore field program 

3.1.1 Plume distribution 

During the course of the field program the cutter suction dredge Amazone was operating close to shore and most 
of our observations were made to the east of the exclusion zone around the access channel, from the coast 
offshore beyond the expected extent of the plume. Contour plots of optical backscatter at depths of 2 m, 4 m 
and bottom are shown in Figure 13. During the period of the field program the dredging operations were mainly 
close to shore at the eastern side of the region shown in Figure 13 and is reflected in the four high backscatter 
values observed at 2 m close to shore. Further from the site of dredging very little evidence of a plume is observed 
near the surface at 2 m. However, a plume is clearly seen at a depth of 4 m, and similarly at the bottom (Figure 
13). A second plume is also observed near the mouth of the creek at Onslow. 

Vertical sections of backscatter along the axes of the dredge generated plume and off the creek are shown in 
Figure 14 and Figure 15 respectively. In Figure 14 the plume is seen to be subsurface except very close to shore 
while in Figure 15 the plume is more evenly distributed throughout the water column. 
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Figure 13. Contours of optical 
backscatter (arbitrary units) at 2 m,  
4 m and the bottom from the CTD 
survey conducted on Oct 22, 2013. 
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Figure 14. Vertical section of optical backscatter (top) along the transect shown by the thick 
dashed line in the lower left panel which also shows the bottom distribution of the sediment 
plume. The lower right panel shows the depths measured at each station. 

 

 
Figure 15. Vertical section of optical backscatter (top) along the transec, shown by the thick 
dashed line in the lower left panel which also shows the bottom distribution of the sediment 
plume. The lower right panel shows the depths measured at each of the station. 
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3.1.2 DALEC results 
Approximately 17,030 spectra were captured by the DALEC during the Onslow deployment. Figure 16 shows a time series of 
remote sensing reflectance for one spectral band (627 nm) along an arbitrary (typical) transect. The red circles show data 
that are likely affected by sunglint. When the boat is continuously changing bearing, the orientation of the DALEC is adjusted 
manually to the optimum orientation. If the orientation of the DALEC is not optimum, either due to course heading or due to 
excessive boat movement during heavy seas, sunglint contamination can occur. Sunglint contamination can also occur 
occasionally due to direct reflection from facets of water on wave faces. Post processing and data quality control, primarily 
median filtering, was applied to all raw DALEC data. 

 

 
Figure 16. Plot of the DALEC derived Rrs for the 627 nm spectral band over the transect conducted on the 21st of October 
2013. The red circles show where contamination from sunglint is suspected. Any sharp deviation from the continuum is 
likely to be caused by glint. 

 

Figure 17 shows examples of ‘clean’ Rrs spectra and the response to both high and low turbidity water. At lower 
TSS concentrations (lower turbidity) the backscatter (reflectance) is dominated by organic matter, resulting in 
maximum reflectance in the green region of the spectrum (~570 nm). At high TSS concentration (high turbidity) 
the water reflectance is dominated by mineral particulates, resulting in an overall increase across the spectrum, 
and the reflectance maximum shifting to the red end of the spectrum (640−690 nm), and also increasing the 
reflectance of NIR wavelengths (~800 nm). The remote sensing TSS algorithms, such as those reviewed in Section 
4.2 typically rely on red and/or NIR spectral bands. The SASM algorithm used for this work was applied to MODIS 
band 1 (~645 nm), Landsat-8 band 4 (~655 nm) and the WV2 red band (~660 nm). 
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Figure 17. Clean DALEC Rrs spectra from the transect of the 21 October 2013. The magnitude of the spectrum increases 
over the turbid water, but the change of the spectral shape is far more indicative of high levels of suspended sediment. 
The data peak is now centred around the red part of the spectrum and there is a dramatic increase in the near infrared 
(NIR) where water is almost opaque. 

 

Figure 18 shows DALEC-derived Rrs spectra for the range of TSS concentrations sampled across a turbid dredge 
plume. As the concentration of TSS increases the remote sensing reflectance is observed to increase significantly 
in the red and NIR regions of the spectrum. The relationship between the increase in reflectance and the TSS 
concentration was used to develop the SASM TSS algorithm (Chapter 6). 

 
Figure 18. DALEC-measured in situ remote sensing reflectance for a range of TSS concentrations. 

 

3.1.3 ac-s results 

Just over 19 hours of underway ac-s data were collected over 5 days of deployment. The ac-s was configured to 
capture data 4 times a second, producing approximately 275,000 data points. The data presented in Figure 19 to 
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Figure 22 have been smoothed using time-based median filtering with a filter width of either 30 or 36 s. The 
peaks in scattering in each figure correspond to periods of time that the boat was passing through water 
characterised by enhanced turbidity. 

 

  

Figure 19. Scattering values for selected wavelengths of 
the first ac-s deployment. 

Figure 20. Scattering values for selected wavelengths of 
the second ac-s deployment. 

  

Figure 21. Scattering values for selected wavelengths of 
the third ac-s deployment. 

Figure 22. Scattering values for selected wavelengths of 
the fourth ac-s deployment 

 

Figure 19 to Figure 22 show data where ‘meandering’ transects were conducted, with the boat moving in and 
out of high and low turbidity regions, typically closer and further from the coast. Figure 22 shows data retrieved 
mainly in lower turbidity waters further out from the coast, evidenced by the scattering coefficient remaining 
below 3 m-1. Figure 20 shows significant effects due to noise around the 1 hour mark. It is suspected that this 
was caused by air bubbles in the flow through system.  Figure 21 and Figure 22 both show some negative values 
that do not appear to be caused by noise but are likely caused by fouling of the absorption tube. Erroneous data 
not removed by the filtering process were subsequently removed by hand. 

A total of 85 station casts also provided inherent optical properties for a range of TSS concentrations. The 
absorption and scattering coefficients for different ranges of TSS concentrations are shown in Figure 23 and 
Figure 24 respectively. As concentration of total sediments increases the spectral absorption and scattering 
coefficients increase for the majority of the stations. However, for the highest load of total sediment 
concentration (69.6 mg L-1) the absorption and scattering coefficient is lower than its nearest corresponding TSS 
weight station (48.4 mg L-1). The reason for such a case is likely saturation of the ac-s instrument due to extreme 
sediment concentration. The quality control of data was improved by comparison with results from other 
instruments. 
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Figure 23. ac-s measured spectral absorption coefficients 
for a range of TSS concentrations. 

Figure 24. ac-s derived spectral total scattering coefficients 
for a range of TSS concentrations. 

 

3.1.4 Comparison of the ac-s and the DALEC 
Figure 25 and Figure 26 show examples of comparisons between Rrs at 642 nm from the DALEC and the scattering coefficient 
at 642 nm derived from the ac-s. At low scattering values (<5 m-1) the relationship is well described by a linear fit, as shown 
in Figure 26. At higher scattering levels the relationship deviates from the linear and a power fit gives a better result, although 
more data points at high scattering values would be required to provide a more definitive empirical relationship. The non-
linear model fit in Figure 25 is purely empirical. The relationship between Rrs and scattering inherent to the SASM TSS 
algorithm (Section 6) is semi-analytical. 

 

  
Figure 25. Rrs (642 nm) from the DALEC versus the scattering coefficient (642 nm) derived from the ac-s. Linear and 
power function fits to the data are shown. The dashed red lines indicate the extent of the rms error. 
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Figure 26. Rrs (642 nm) from the DALEC versus the scattering coefficient (642 nm) derived from the ac-s. The 
extent of the data is limited here to scattering coefficients less than 5 m-1 (a subset of the data presented in 
Figure 25). A linear fit to the data is shown. The dashed red lines indicate the extent of the rms error. 

 

3.1.5 Hydrorad and Hydroscat results 

Figure 27 shows the Hydrorad-measured downwelling spectral irradiance from data binned near the maximum 
depth of each vertical profile. Each spectrum was smoothed using a 5-point median filter to remove a small 
number of data spikes. The Hydrorad profiles were used to calculate spectral light attenuation, K(λ), for the water 
column and derive a relationship between K(λ) and TSS (Section 7). 

 
Figure 27. Hyperspectral irradiance spectra for the maximum depth bin of each of the casts 
performed with the Hydrorad. 
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Figure 28. Spectral backscattering coefficients for a selected vertical cast of the Hydroscat. 

 

Figure 28 shows the spectral backscattering coefficients measured by the HS6 for a selected cast. The sampling 
method employed with the rosette casts was to pause just below the water surface for approximately a minute 
and then to proceed quickly to maximum depth and pause for another minute. Data shown in Figure 28 have 
been ‘binned’ by depth, producing single data points evenly distributed with depth. The near-surface samples 
collected by optical instruments are often poor, as is shown by the data at depths less than 1.5 m in Figure 28. 
The backscattering coefficients from 1.5 m to 4.5 m depth are relatively constant, indicating a well-mixed water 
column with a uniform particulate distribution from surface to depth. 

3.1.6 Hydrolight modelling 

Inherent optical property data from the field programme were used as input to Hydrolight (Mobley and 
Sundman, 2013) to model surface reflectance for the various optical conditions sampled. Figure 29 shows in situ 
Rrs collected using the DALEC compared to Rrs modelled using Hydrolight. The TSS concentration used as input to 
Hydrolight was set to the same as the in situ measurement of TSS, 3.1 mg L-1. The backscattering ratio, bb/b, of 
particulates was varied from 1.0% to 3.0% in 0.5% increments. For this example, the modelled Rrs tends to 
underestimate the DALEC measured Rrs in the blue region of the spectrum (400−500 nm) while it closely agrees 
in the red region of the spectrum (600−700 nm) for a backscattering ratio of 2.5%. As was discussed in Section 
5.1.2, and reviewed in Section 6, the majority of TSS algorithms rely on one or two reflectance measurements in 
the red spectral region, thus the model discrepancies evident for the blue end of the spectrum in Figure 29 are 
not critical. 

The curves in Figure 29 demonstrate the sensitivity of Rrs to bb/b. This, and other factors affecting the ocean 
reflectance, were modelled extensively with Hydrolight to compare over 70 published TSS algorithms. Results 
are presented in Section 6.2. 
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Figure 29. In situ and Hydrolight simulated Rrs for different bb/b ratios for an in situ TSS concentration of 3.1 mg L-1. 

 

3.2 Results of water sampling 

3.2.1 Particle size distributions 

Vertical profiles of in situ particle size distributions were measured using the LISST with representative surface 
and bottom distributions shown in Figure 30. In general, the particle size distribution shows more ‘fines’ near the 
surface and coarser material towards the bottom. 

 
Figure 30. In situ particle size distributions at the surface and bottom as measured by the LISST. 

 

The particle size distributions obtained from UWA laboratory analysis of the sediment cores are shown in Figure 
31. Clearly there are significant differences between the in situ and laboratory particle size distributions and a 
possible explanation is the presence of flocs in the natural environment, although evidence for this is anecdotal. 
The process of freezing and thawing the sediment samples, and the addition of a dispersant, ensures all flocs are 
broken prior to analysis in the Mastersizer 2000. This could explain the bi-modal distribution seen in Figure 31, 
with the peak around 5−7 µm due to fine particles which had been incorporated in the flocs. The peaks in the 
particle size distributions in Figure 30 are quite broad and lie between 40 µm and 100 µm which may be due to 
the unbroken flocs. These results suggest the complicated processes of flocculation may need to be considered 
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in the numerical modelling being undertaken in Theme 2/3 project 4. A bi-modal PSD was also observed for many 
samples measured in the laboratory experiment reported in Fearns et al. (2018). Combined effects of particulate 
generation at the dredge head, particle advection, settling and resuspension and sample collection may also lead 
to a natural sorting of particle size fractions. The disparity in laboratory versus in situ measured PSD requires 
rigorous investigation before we can attribute a reason with confidence. 

 
Figure 31. Particle size distributions from laboratory analysis of the sediment core samples. 

 

3.3 Offshore field program June 7-21, 2014 

3.3.1 Plume distribution 

In June 2014 the major dredging operations were located about midway along the access channel and the plume 
was observed to be advected eastward and westward depending on the stage of the tide. The tidal advection 
can be observed in successive MODIS scenes in Figure 32 showing images at 10:00 and 14:30 hours on June 13, 
2014. High tide occurred at about 11:00 hours and low tide at 17:20 hours. 
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Figure 32. MODIS satellite images showing sediment plumes associated with dredging in the access channel and over 
spoil ground C; (a) 10:00 hours (b) 14:30 hours. 

 

Over the course of the field program 85 vertical profiles of temperature, salinity, optical backscatter, and particle 
volume concentration were completed. Other optical properties including reflectance and absorption and total 
suspended solids were also obtained and are described elsewhere in this report.  

The correlation between the optical backscatter (measured by OBS) or the total volume concentration (measured 
by LISST) and the TSS from water samples are shown in Figure 33 and Figure 34. The optical back scatter has a 
clear statistically significant correlation with good agreement between both the near bottom and near surface 
samples. The slope of the regression is consistent with the conversion of NTU to TSS applied in the Wheatstone 
EIA. The total volume concentration also shows a statistically significant correlation with the TSS (Figure 34), 
however, with somewhat greater scatter when compared to the OBS. The excess density (i.e. particle density 
minus water density) is considerably smaller than typical values for mineral particles, with the regression line 
suggesting an excess density of approximately 250 kg m-3. 

It is noted that the slope of the regression between TSS and NTU obtained from the field data is much smaller 
than that obtained from the Laboratory tests of mechanically suspended surficial grab samples (see Project 3.2.2 
- Fearns et al. 2018). The laboratory tests had slopes between 2 and 6. This suggests that (1) the bed sampled 
material is not representative of the in water-column dredge plume, or (2) that the action of freezing, storing 
and thawing the samples has fundamentally changed the scattering properties of the particles (due to break-up 
of flocs altering the surface area to mass ratio). 
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Figure 33. Correlation between TSS from 
water samples and optical backscatter. 
Circles and triangles correspond to water 
samples from the surface and near the 
bottom, respectively. 

 

Section plots of optical backscatter across the plume to the west of the access channel on June 12 and 13 are 
shown in Figure 35. The sections run parallel to the western boundary of the access channel and traversed the 
plume from the southern to northern boundaries of the plume based on visual observations at the surface. On 
June 12 a subsurface plume was observed with strong vertical gradients, similar to what was observed in October 
2013. Volume concentration of suspended particles measured by the LISST show a pattern similar to optical 
backscatter (Figure 36). 

 

 
Figure 34. Correlation between TSS from water samples and total volume concentration. Circles and triangles correspond 
to water samples from the surface and near the bottom, respectively. 
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Figure 35. Vertical sections of optical backscatter parallel to the western edge of the access channel, (a) June 12, 2014 
(b) June 13, 2014. The sections traverse the plume from south (left) to north (right) and the station locations are 
indicated by the vertical dashed lines, including the left and right edges of the plot. 

 

 
Figure 36. Vertical sections of volume concentration corresponding to Figure 35. 

 

An interesting result from LISST measurements is that peak particle diameter is smaller where volume 
concentration is high (Figure 37a,b). This result is contrary to the common assumption that particle diameter 
increases with increasing concentration through flocculation. Note that this does not mean that there are more 
large particles where concentration is low (see Figure 37a,c); instead there are more particles, particularly small 
particles, where concentration is high. LISST measurements become questionable if light attenuation within the 
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sampling volume exceeds 70−80% (Sequoia Scientific; http://www.sequoiasci.com/article/lisst-concentration-
limits/); the measurements are considered mostly valid despite relatively high volume concentration.  

 
Figure 37. Results of LISST measurements on 13 Jun 2014. Values are averages over the water column. Note that 100 
µm3 m-3 corresponds to ~250 mg L-1 assuming particle density of 2650 kg m-3 and no flocculation. 

 

As mentioned above the signal to noise ratio (SNR) from the M9 ADCP provides a proxy for TSS. This is illustrated 
in Figure 38 where TSS derived from water samples collected during the underway surveys is plotted against SNR. 
While only a few co-located water samples were collected during the underway survey the good correlation 
provides confidence in using SNR as a proxy for TSS. 

 

 

 

 

 

 

 

 

Figure 38. TSS from water 
samples collected at co-
located stations during the 
underway survey plotted 
against SNR from the 
Sontek M9 ADCP. 
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Shown in Figure 39 is TSS derived from a MODIS image on which the underway cruise track is overlaid. The 
sediment plume associated with dredging operations is clearly visible.  

 
Figure 39. TSS derived from MODIS showing numbered transects from the underway survey. 

 

Shown in Figure 40 are plots of the M9 SNR along sections 1 and 8 as shown in Figure 39. These section plots 
show more structure than seen in the backscatter plots (see Figure 35). Evidence of increased concentration 
towards the bottom is seen in transect 1 around 2200 m and 3000 m, and again around 3300 m and 3600 m in 
transect 8. Transect 1 also shows instances where TSS is higher near the surface and decreases through the 
middle of the water column before increasing again near the bottom. Both transects also show instances where 
TSS is quite uniform from the surface to bottom but with significant horizontal variability. 

 

Figure 40. Vertical 
section of SNR along 
transects 1 and 8 from 
the underway survey. 
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The different vertical structure of the plumes reflect the relative importance of downward settling and upward 
turbulent diffusion. The sub-surface plume observed on June 12 reflects weak turbulent mixing relative to 
downward settling. However, just one day later the plume is mixed through the water column suggesting 
turbulence dominates over settling. The relative magnitude of these two processes is represented by the Peclet 
number given by: 

𝑃𝑃𝑃𝑃 =  |𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|
|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|

= 𝑤𝑤𝑠𝑠𝐻𝐻
𝐾𝐾𝑠𝑠

 (7.) 

where ws is the sediment settling velocity, H is the water depth and Ks is the (vertical) turbulent sediment 
diffusivity. 

Estimating how far a plume will be advected horizontally depends on the rate at which the sediment falls out of 
the water column which in turn will depend on the Peclet number; in the absence of resuspension the minimum 
time scale for settling occurs when Pe>>1, and the maximum time scale for settling occurs when Pe<<1.  

3.3.2 Resuspension 

The results of the mooring measurements are summarized in Figure 41. The gaps in the data are caused by low 
coherence or signal to noise ratio in ADV measurements. 

 
Figure 41. Results of ADV and OBS measurements on the field experiment on Jun 2014. Gaps in the data are caused by 
low coherence or signal to noise ratio in ADV measurements. Shading indicates periods when the ADVs were potentially 
in the wake of the mooring unit. 
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The ABS and OBS give well correlated results (Figure 41b). The differences between ABS and OBS are often 
attributed to change in particle size, but we could not relate the difference to particle size because of malfunction 
of the LISST. Bottom shear stress is correlated well with current speed if the measurements are not obstructed 
by the mooring unit (Figure 41a,c). The relationships between bottom shear stress and suspended sediment (SS) 
flux (Figure 41c,d) are not very clear from the time series, but scatter plots clearly show positive correlation 
(Figure 42). The correlations are good given that the turbulence measurements and ABS (or TSS) displayed large 
fluctuations. When the ABS is calibrated against TSS, the near-bottom ADV measurements provide a quantitative 
in situ stress-resuspension relationship, which is then used in sediment transport modelling. 

 

Figure 42. Correlation between 
suspended sediment flux from 
ADV measurements and near-
bottom shear stress for the field 
experiment in June 2014. 

 

3.3.3 Optical property measurements 

As with the first field campaign in October 2013, several instruments were used to undertake above surface, sub-
surface and profiling optical measurements, with some minor differences. The main difference was the use of a 
different ac-s instrument. For the 2013 field work the instrument had a 10 cm optical path length, and for the 
2014 campaign a 25 cm optical path length. The reason for the change was due to availability of instruments. 
The 25 cm path length is less suited to taking measurements in highly turbid water so measurements taken were 
characterised by more instances of saturation where the sediment load exceeded the instruments capacity. The 
other difference was that the ac-s was operated in profiling mode and was deployed on the rosette along with 
the same suite of instruments as used in October 2013. Water sampling was conducted in line with the methods 
described in Section 4.1. Also, analysis of the TSS data from 2013 highlighted an issue where TSS samples 
processed with magnetic filter cups produced anomalous results (see Appendix IV). For the 2014 field work all 
TSS samples were filtered with screw secured filter cups.  

During the 2014 field campaign 7,935 spectra were captured by the DALEC, 104 casts made with the Hydroscat, 
11 profiles conducted with the Hydrorad, 93 casts and 2 underway profiles conducted with the ac-s, and water 
samples collected at 49 stations.  

3.4 Laboratory experiments 

Laboratory experiments aimed at assessing optical characteristics of suspended particulates, and cross 
comparison of various in situ instruments, were carried out by deploying instruments in a large tank full of filtered 
seawater. Sediment samples were added to progressively increase the TSS. Results are presented in Project 3.2.2 
(Fearns et al. (2018)). 

We also undertook laboratory experiments to study the impact of measurement protocols on the accuracy of 
laboratory-based TSS measurements. Factors studied included; filter cup type, drying time, pre-washing 
methods, sample washing methods, and retention of salt in sample.  

Briefly:  

• Pre-washing removed approximately 0.5% (0.1% to 0.7%) of dry filter weight. Pre-washing is usually 
recommended to remove glass fibres that may otherwise be lost during sample filtering. Washing with 
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one large volume was considered better than many smaller washes.  

• There is anecdotal evidence that dry filters may absorb moisture from the air, adding to the weight. In 
lab conditions, short term exposure to the air did not increase filter weight. 

• Most protocols do not specifically recommend washing filter samples to remove salt, although there is 
a generally accepted procedure to wash marine samples to remove salt. For our samples, washing salt 
from filters removed about 0.5% of total filter weight. 

• Magnetic filter cups can double the percentage change in apparent sample weight compared to screw-
top cups. We suspect the sediment was slightly magnetic, and the very fine particulates that would 
normally have been lost during filtration were retained (see Appendix IV). 

4 Remote Sensing TSS Products and Algorithm Development 

Deriving estimates of TSS from remotely sensed data essentially requires an understanding of the measured 
ocean reflectance with respect to the levels of TSS present in the water. Numerous such TSS algorithms exist, 
however the highly variable optical nature of inorganic sediments across the globe has led to algorithms that are 
‘tuned’ to specific locations, specific water types, or specific conditions. Some algorithms are inherently very 
localised in their applicability, whilst others are more robust and potentially transferable from one location to 
another. A review and comparison of TSS algorithms from the past decade is provided in Section 4.2 below (see 
also Dorji and Fearns, 2016). 

Development of a TSS algorithm may be achieved by determining an empirical relationship between 
contemporaneous in situ measurements of TSS and ocean reflectance. The form of the equation describing the 
relationship may be selected purely by inspection, or, it may be formulated based on an analytical understanding 
of the optical relationships between in-water constituents and the surface reflectance. The DALEC and TSS 
measurements from the 2013 field campaign were used to derive a simple local TSS algorithm for the 
Wheatstone dredge project, based on the work of Evans et al. (2012). To do this, DALEC data were spectrally 
resampled to match the MODIS band1 spectral response then, along with the in situ TSS data, were fit to the 
equation: 

𝑇𝑇𝑇𝑇𝑇𝑇 = 1
𝑐𝑐1
� 𝑎𝑎𝑤𝑤𝑅𝑅𝑟𝑟𝑟𝑟(𝐵𝐵1)
𝑐𝑐0−𝑅𝑅𝑟𝑟𝑟𝑟(𝐵𝐵1) − 𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑐𝑐2� (8.) 

where 𝑎𝑎𝑤𝑤 is the absorption coefficient of pure water, 𝑏𝑏𝑏𝑏𝑏𝑏 is the backscatter coefficient of pure water, Rrs(B1) is 
the remote sensing reflectance for MODIS band 1, and the coefficients 𝑐𝑐0, 𝑐𝑐1, 𝑐𝑐2 are the fitting parameters. 
Equation 8 was then used to derive TSS concentration from MODIS band1 Rrs data. 

Figure 43 shows a map of TSS derived from MODIS Aqua data using Equation 8. The colour scale applied to the 
TSS is clipped at 50 mg m-3 even though the maximum TSS in the extremely turbid regions is significantly higher. 
An algorithm of the same form as Equation 8 but with different fitting parameters, tuned to Landsat 8 spectral 
response, was also derived from the DALEC and TSS data. Figure 44 shows an example of a Landsat 8 TSS map 
for the same day as Figure 43. Note the overpass time of Landsat 8 is approximately 4 h earlier than that of 
MODIS Aqua. Note also that the Landsat 8 TSS product was created with reflectance data that were not derived 
from a rigorous atmospheric correction (AC) process.  

There are several methods of AC available within SeaDAS7, and for that matter, in the literature, most of which 
deal with the retrieval of the manner and type of aerosol used with the AC. The choice of AC method does have 
an impact on the derived Rrs, and therefore the remotely sensed TSS.  

For this work we improved on the TSS algorithm described by Equation 8 as we collected more in situ data and 
adopted a semi-analytical optical model. Section 4.1 describes the development and validation of the Semi-
Analytic Sediment Model (SASM) (Dorji et al., 2016). All TSS remote sensing data analysed in this report are based 
on the SASM. 
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Figure 43. MODIS Aqua derived TSS for the Wheatstone dredge program utilising Seadas7 l2gen 
atmospherically corrected remote sensing reflectance products and the simple TSS algorithm described 
by Equation 8 (data date: 23/05/2014). 

 

 
Figure 44. Landsat 8 derived TSS utilising Seadas7 l2gen atmospherically corrected remote sensing 
reflectance. 

 

4.1 A semi-analytic model for estimating total suspended sediment concentration in turbid coastal 
waters of northern Western Australia using MODIS-Aqua 250 m data. 

The full manuscript by Dorji et al. (2106) is at Appendix I. Abstract: Knowledge of the concentration of total 
suspended sediment (TSS) in coastal waters is of significance to marine environmental monitoring agencies to 
determine the turbidity of water that serve as a proxy to estimate the availability of light at depth for benthic 
habitats. TSS models applicable to data collected by satellite sensors can be used to determine TSS with 
reasonable accuracy and of adequate spatial and temporal resolution to be of use for coastal water quality 
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monitoring. Thus, a study is presented here where we develop a semi-analytic sediment model (SASM) applicable 
to any sensor with red and near infrared (NIR) bands. The calibration and validation of the SASM using bootstrap 
and cross-validation methods showed that the SASM applied to Moderate Resolution Imaging Spectroradiometer 
(MODIS)-Aqua band 1 data retrieved TSS with a root mean square error (RMSE) and mean averaged relative error 
(MARE) of 5.75 mg L-1 and 33.33% respectively. The application of the SASM over our study region using MODIS-
Aqua band 1 data showed that the SASM can be used to monitor the on-going, post and pre-dredging activities 
and identify daily TSS anomalies that are caused by natural and anthropogenic processes in coastal waters of 
northern Western Australia. 

4.2 A Quantitative comparison of total suspended sediment algorithms: a case study of the last 
decade for MODIS and Landsat-based sensors 

The full manuscript by Dorji and Fearns (2016) is at Appendix II. Abstract: A quantitative comparative study was 
performed to assess the relative applicability of Total Suspended Solids (TSS) models published in the last decade 
for the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat-based sensors. The quantitative 
comparison was performed using a suite of statistical tests and HydroLight simulated data for waters ranging 
from clear open ocean case-1 to turbid coastal case-2 waters. The quantitative comparison shows that there are 
clearly some high performing TSS models that can potentially be applied in mapping TSS concentration for 
regions of uncertain water type. The highest performing TSS models tested were robust enough to retrieve TSS 
from different water types with Mean Absolute Relative Errors (MARE) of 69.96%–481.82% for HydroLight 
simulated data. The models were also compared in regional waters of northern Western Australia where the 
highest performing TSS models yielded a MARE in the range of 43.11%–102.59%. The range of Smallest  
Relative Error (SRE) and Largest Relative Error (LRE) between the highest and the lowest performing TSS models 
spanned three orders of magnitude, suggesting users must be cautious in selecting appropriate models for 
unknown water types.  

5 Light Attenuation Derived from Remote Sensing Data 

The June 2014 field program was used to measure light profiles in the water column using the Hydrorad, 
deployed across a range of surface TSS levels. Analysis of the vertical profiles of light in the context of TSS 
concentration allowed development of a relationship between the spectral attenuation of downwelling light and 
the TSS. In turn, this relationship was then applied to remotely sensed TSS images to estimate light levels at the 
substrate in shallow turbid waters. 

Figure 45 shows spectra of the diffuse attenuation coefficients for downwelling light for a range of TSS 
concentrations. Knowledge of the attenuation coefficient allows the calculation of ‘light at depth’, either in terms 
of absolute light level, or as a percentage relative to light incident at the surface. The various spectral attenuation 
curves in Figure 45 show that for low TSS concentrations the attenuation of red light dominates, with the lowest 
attenuation around 550 nm (yellow/green light). For higher TSS concentrations attenuation of blue and NIR light 
is very high, with the lowest attenuation around 600−650 nm (orange/red light).  



Plume Characterisation – Field Studies  
 

 Dredging Science Node  |  Theme 3  |  Project 3.2.1 33 

 

 
Figure 45. Spectral attenuation coefficients for a range of surface TSS concentrations. 

 

 

Kd 490 is the attenuation coefficient at 490 nm and is a common water quality product available from MODIS data 
processed with SeaDAS (Feldman, 2017). However, the algorithm utilised by SeaDAS is essentially a global 
algorithm so may not produce optimum results for specific local conditions.  

The data at 490 nm from those displayed in Figure 45 have been extracted and presented in Figure 46, showing 
the form of the relationship between Kd 490 and TSS concentration. The water conditions sampled in the field 
were not well represented by extremely low TSS concentrations; the data shown in Figure 46 can be considered 
as representing ‘high’ concentration. The natural logarithmic relationship between Kd 490 and TSS derived for 
these data produces negative values when approaching low values of TSS, thus we have introducing a piece-wise 
relationship to deal with low TSS values. Smith and Baker (1981) reported the diffuse attenuation coefficient for 
clear ocean waters at 490 nm as 0.0212 m-1. We have applied a linear relationship for small values of TSS (below 
3 mg L-1). 

𝐾𝐾𝑑𝑑 490 = 0.0774(𝑇𝑇𝑇𝑇𝑇𝑇) +  0.0212  (9.) 

For values of TSS greater than 3 mg L-1, a natural logarithmic relationship is applied to the data. 

𝐾𝐾𝑑𝑑 490 = 1.018(𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑆𝑆)) −  0.865  (10.) 

Using these relationships to calculate Kd 490, combined with bathymetry for the local area, the ratio of light 
available at depth z (typically the substrate depth) to surface intensity was derived by rearranging Equation 1: 

𝐸𝐸𝑧𝑧(𝜆𝜆)
𝐸𝐸0(𝜆𝜆) = 𝑒𝑒−𝐾𝐾(𝜆𝜆)𝑧𝑧  (11.)  
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Figure 46. The relationship between the attenuation coefficient at 490 nm (Kd490) and TSS. Data measured during 
fieldwork conducted in offshore waters near Onslow, Western Australia, June 2014. 

 

Equations 9, 10 and 11, as well as information on water depth, allows a remotely sensed TSS image such as that 
displayed in Figure 52 to be used to generate a light-at-depth image, as shown in Figure 47. In this example the 
light-at-depth is expressed as a percentage of the surface incident light at 490 nm. Figure 47 shows that light 
availability is severely restricted under the dredge spoil (top right) and the merged plume from the Ashburton 
River out flow and the dredge operation (lower centre). 

The information portrayed in Figure 45 represents the full visible spectrum, thus the description here of 
determining light-at-depth at 490 nm is equally applicable to the whole visible spectrum. Figure 48 shows 
modelled spectral downwelling irradiance at a depth of 5 m for TSS concentrations ranging from 2.3 mg L-1 to 10 
mg L-1. The overall irradiance intensity decreases as TSS concentration increases, and the peak in irradiance shifts 
towards the red end of the spectrum as TSS concentration increases. A knowledge of the spectral attenuation 
coefficients of the water column can help provide a better understanding of the spectral nature of the light field 
in and below turbid dredge plumes. 
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Figure 47. Map of the percentage of surface light at 490 nm available at the substrate. The green colour indicates areas 
where the Rrs cannot be retrieved due primarily to shallow water optical effects.  

 

 
Figure 48. Modelled spectral irradiance, showing the decrease in overall intensity as TSS increases, and the shift in the 
irradiance peak towards red wavelengths as TSS increases. 
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6 Impact of the Spatial Resolution of Satellite Remote Sensing Sensors in the 
Quantification of Total Suspended Sediment Concentration: A Case Study in 
Turbid Waters of Northern Western Australia 

The full manuscript by Dorji and Fearns (2017) is at Appendix III. Abstract: The impact of anthropogenic activities 
on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget 
of the coastal waters, which have negative impact on the coastal ecosystem. Satellite remote sensing provides a 
powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should 
be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor’s radiometric 
properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS 
algorithms itself. In this study, we studied the impact of different spatial resolution of satellite sensor on the 
quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS 
product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational 
Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and 
coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS 
product in different turbidity conditions. The results from the study show that in the waters of high turbidity and 
high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 
while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading 
the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the 
TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. 

7 Monitoring TSS Through Time 

The complete series of daily MODIS-derived TSS data provides an opportunity to undertake various analyses of 
spatio-temporal patterns. We present here examples of time series plots of TSS for specific regions, and yearly 
and monthly anomalies of TSS.  

7.1 TSS time series 

Figure 49 shows time series plots of TSS for four regions, representing the dredge area (DA), spoil ground (SG), 
river plume (RP) and a clear area (CA). The regions are indicated on the mean TSS image at the top of Figure 49. 
The four lower panels in Figure 49 show the TSS time series with curves showing monthly, seasonal and yearly 
mean TSS values. 
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(a) Clear Area (CA) (b) Spoil Ground (SG) 

  
(c) River Plume (RP) (d) Dredge Area (DA) 

Figure 49. Time series plots of TSS generated from MODIS Aqua imagery for the CA (Clear Area), SG (Spoil Ground), RP 
(River Plume) and DA (Dredge Area) locations in the Pilbara region. 

 

7.2 Yearly TSS anomalies 

Figure 50 shows yearly TSS anomaly images from 2002 to 2015. Each yearly average is compared to an averaged 
TSS background determined from 10 years of data averaged between January 2003 and December 2012. The red 
shades indicate a positive anomaly where the average annual TSS is higher than the average of the 10 year period. 
Very strong positive anomalies are evident during 2013 and 2014, coinciding with dredge activities. Positive 
anomalies are also evident close to the coast, near the Ashburton River outflow, during 2003, 2004, 2005 and 
2006, most likely due to increased rainfall and subsequent enhanced river outflow. The scale of the annual 
anomalies need to be interpreted as an average difference for all days of the year, however the actual length of 
and period of the anomaly is not evident from annual figures. For example, an annual anomaly of 1.0 mg m-3 may 
be caused by a daily anomaly of 1.0 mg m-3 for every day of the of the year, or an anomaly of 12 mg m-3 for one 
month of the year, or 365 mg m-3 for one day of the year. Section 9.3 presents images of monthly anomalies. 
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Figure 50. Yearly MODIS TSS anomaly images between 2002 (half year) and 2015 for the Pilbara region of Western 
Australia. Each yearly average is compared to an averaged TSS background determined from 10 years of data averaged 
between January 2003 and December 2012. 

 

7.3 Monthly TSS anomalies 

Figure 51 to Figure 64 show the monthly anomalies from 2002 to 2015. Each monthly average is compared to an 
averaged TSS background determined from 10 years of data averaged between January 2003 and December 
2012.  

As noted for Figure 50, the years 2003-2006 are characterised by positive anomalies associated with the outflow 
of the Ashburton River. Figure 52 to Figure 55 (years 2003-2006) also display significant monthly anomalies for 
the Ashburton outflow region. For an annual positive anomaly to occur (as displayed in Figure 50), the monthly 
anomalies for that year need to occur for the majority of months, or, a few monthly anomalies need to be 
significantly higher than the background levels. For example, the monthly anomaly images for 2004 (Figure 53) 
show anomalies near the Ashburton River mouth during February, March, April, May, June, July, September and 
October, translating to a positive annual anomaly for the Ashburton River region for 2004 (Figure 50). However, 
the October monthly anomaly that is apparent for the complete region does not translate into an annual anomaly 
for the complete region. 
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The years 2013 and 2014 are also evident in Figure 50 as displaying strong positive anomalies associated with 
the dredge operations. Figure 62 (2013) displays distinct anomalies from May to December in the region of the 
spoil ground (SG in Figure 49), east of Thevenard Island, as well as strong anomalies close to the coast. However, 
the coastal anomaly spans regions RP and DA, thus the source of the plume is not definite. Similar spatial patterns 
are evident in Figure 63, the monthly anomalies for 2014. 

The monthly anomaly images for 2015 (Figure 64) do show strong positive anomalies, however the spatial 
distributions are not similar to those of 2013/2014. The anomalies during March and May are spread over a 
significant proportion of the image rather than being concentrated in the regions of the spoil ground, dredge 
operations and river outflow. 
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Figure 51. Monthly MODIS TSS anomaly images from 2002 for the Pilbara region of Western Australia. Each monthly average is 
compared to an averaged TSS background determined from 10 years of data averaged between January 2003 and December 2012. 
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Figure 52. Monthly MODIS TSS anomaly images from 2003 for the Pilbara region of Western Australia. Each monthly average is 
compared to an averaged TSS background determined from 10 years of data averaged between January 2003 and December 2012. 
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Figure 53. Monthly MODIS TSS anomaly images from 2004 for the Pilbara region of Western Australia. Each monthly average is 
compared to an averaged TSS background determined from 10 years of data averaged between January 2003 and December 2012. 
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Figure 54. Monthly MODIS TSS anomaly images from 2005 for the Pilbara region of Western Australia. Each monthly average is 
compared to an averaged TSS background determined from 10 years of data averaged between January 2003 and December 2012. 
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Figure 55. Monthly MODIS TSS anomaly images from 2006 for the Pilbara region of Western Australia. Each monthly average is 
compared to an averaged TSS background determined from 10 years of data averaged between January 2003 and December 2012. 
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Figure 56. Monthly MODIS TSS anomaly images from 2007 for the Pilbara region of Western Australia. Each monthly 
average is compared to an averaged TSS background determined from 10 years of data averaged between January 2003 
and December 2012. 
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Figure 57. Monthly MODIS TSS anomaly images from 2008 for the Pilbara region of Western Australia. Each monthly average is 
compared to an averaged TSS background determined from 10 years of data averaged between January 2003 and December 2012. 
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Figure 58 Monthly MODIS TSS anomaly images from 2009 for the Pilbara region of Western Australia. Each monthly average is compared 
to an averaged TSS background determined from 10 years of data averaged between January 2003 and December 2012. 
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Figure 59. Monthly MODIS TSS anomaly images from 2010 for the Pilbara region of Western Australia. Each monthly average is 
compared to an averaged TSS background determined from 10 years of data averaged between January 2003 and December 2012. 
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Figure 60. Monthly MODIS TSS anomaly images from 2011 for the Pilbara region of Western Australia. Each monthly average is 
compared to an averaged TSS background determined from 10 years of data averaged between January 2003 and December 2012. 
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Figure 61. Monthly MODIS TSS anomaly images from 2012 for the Pilbara region of Western Australia. Each monthly average is 
compared to an averaged TSS background determined from 10 years of data averaged between January 2003 and December 2012. 
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Figure 62. Monthly MODIS TSS anomaly images from 2013 for the Pilbara region of Western Australia. Each monthly average is 
compared to an averaged TSS background determined from 10 years of data averaged between January 2003 and December 2012. 
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Figure 63. Monthly MODIS TSS anomaly images from 2014 for the Pilbara region of Western Australia. Each monthly average is 
compared to an averaged TSS background determined from 10 years of data averaged between January 2003 and December 2012. 

    

January February March April 

    

May June July August 

  

 

 

September October November December 

 

Figure 64. Monthly MODIS TSS anomaly images from 2015 for the Pilbara region of Western Australia. Each monthly 
average is compared to an averaged TSS background determined from 10 years of data averaged between January 2003 
and December 2012. 
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7.4 TSS Anomalies and Light-At-Depth 

The relationship between TSS and spectral light attenuation, presented in Section 7, may be used to infer the 
Light-At-Depth (LAD) associated with TSS loads. A selection of the monthly TSS anomalies presented in Section 
7.3 are presented in Figure 65 alongside the monthly average LAD product. The monthly TSS anomalies are scaled 
to only show the positive anomalies, representing locations of increased TSS compared to the 10 year average. 
The monthly LAD product was produced by calculating the LAD product for daily TSS data, then averaging the 
LAD for each month. The LAD product is presented as the percentage of light at the depth of the substrate relative 
to the intensity of light at the surface of the ocean (just below the surface).  

The two top panels in Figure 65 show a typical pre-dredging scenario, represented here by February 2010. The 
left panel shows that TSS anomalies are all close to 0 mg m-3. The right panel shows the LAD is between 10 and 
25% for the majority of the study region (indicated by red shades). The region of very low LAD values in the NW 
corner of the study region, indicated by purple/white shades, is due to the increased water depth. For the water 
conditions during February 2010, the main factor influencing the amount of light that reached the substrate was 
the depth of the water. The situation depicted by the LAD image for February 2010 could be described as the 
baseline condition for LAD. 

The second two panels in Figure 65 show the monthly average positive TSS anomalies for August 2013 (left panel) 
and the associated monthly averaged LAD for the same period (right panel). The TSS anomaly image shows a 
distinct anomaly associated with the dredging and river outflow region, the spoil ground, and a patch of water 
in the NE corner of the image. The LAD image is generally similar to the baseline condition represented by the 
February 2010 scene, but with very low LAD values in the same locations as the TSS anomalies. The LAD has been 
reduced from the order 10-25% background levels down to values of a few percent in the turbid water regions. 

The third and fourth panels down in Figure 65 show the monthly average positive TSS anomalies for 
September/October 2013 (left panels) and their associated monthly averaged LAD products for the same periods 
(right panels). The positive TSS anomalies extend across the majority of the study region with large anomalies in 
the river outflow and dredge operation regions and lower values in surrounding waters, and the LAD products 
show reduced light levels across the scene, with the largest reduction in light in the regions of highest TSS 
anomalies. 

  



Plume Characterisation – Field Studies  

48 Dredging Science Node  |  Theme 3  | Project 3.2.1  

 

 

 

a 

 

 

b 

 

 

c 

 

d 

 

e 

 

f 

 

g 

 

h 

Figure 65. (a) Positive TSS anomaly for February 2010. (b) PAR LAD for February 2010. (c) Positive TSS anomaly for August 
2013. (d) PAR LAD for August 2013. (e) Positive TSS anomaly for September 2013. (f) PAR LAD for September 2013. (g) 
Positive TSS anomaly for October 2013. (h) PAR LAD for October 2013. 
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8 Discussion and Conclusions 

8.1 Inshore and offshore field programs 

The field programs provided data to support a number of activities and outcomes of this work. The optical 
reflectance and TSS data were used directly to develop a semi-analytical TSS algorithm, discussed in the following 
section. The vertical hyperspectral profiles of downwelling irradiance were used to derive TSS versus spectral 
light attenuation relationships, and these were in turn used to generate spectral and PAR light-at-depth data 
products, discussed below. Measurements of plume spatial extent, derived from combined transects and vertical 
profile measurements using various optical and acoustic scattering measurements provided a three dimensional 
representation of plume ‘density’ or ‘concentration’. Based on the observations of plume structure it is not 
possible to conclude that there is a ‘typical’ vertical distribution for a dredge plume. Clearly there are many 
factors influencing the horizontal and vertical distribution, explained in the modelling report of Sun et al. (2017). 
With respect to the remote sensing of TSS within a dredge plume, the ‘depth of penetration’ of the sensor, or 
more correctly, the depths from which the sensor can detect light, depends on the water turbidity but in general 
terms is of the order of a few metres or less. The implications for this are that the TSS reported by remote sensing 
methods is only representative of the near-surface concentration, therefore attempting to estimate the TSS 
concentration throughout the water column is unlikely to produce results with high confidence. 

8.2 Algorithm development, comparisons and spatial resolution 

The DALEC Rrs and in situ TSS data collected in the field program were used to develop a semi-analytical TSS 
remote sensing algorithm. The form of the algorithm was justified by comparing to empirically-based exponential 
and linear algorithms, then the accuracy of each compared to the in situ data. However, typical remote sensing 
algorithms are empirically derived, or at best, semi-analytical in form. The semi-analytical forms may include 
parameters related to optical properties of in water optical constituents, such as the backscattering ratio of 
particulate matter. The results of Rrs modelling and comparison to in situ spectral Rrs measurements, shown in in 
Figure 29, suggest that the correct choice of backscattering ratio is critical for accurately relating the surface 
reflectance to TSS concentration. 

The SASM algorithm we developed from the field data, described fully in Section 4.1, was compared to over 70 
MODIS and Landsat algorithms published in the past decade and shown to be robust with respect to performance 
across a wide range of water types, including for changes in the backscattering ratio of suspended particulates. 
The SASM ranked equal top with a small number of other algorithms. Faced with the multitude of published 
algorithms, end-users must be mindful of the pedigree of algorithms and the robustness with respect to 
application in varied water types. 

By adjusting the backscattering ratio for particulates, the agreement between modelled and measured 
reflectance can be improved. The backscattering ratio is affected by particle size. This suggests we need to 
improve the determination of particle size if we wish to improve the modelling of ocean reflectance, or in-water 
optical processes such as diffuse attenuation. Diffuse attenuation is important for estimating light intensity at 
the substrate. The modelled reflectance using ratios of bb/b of 2% to 3% tend to agree well with the reflectance 
of waters that have high sediment concentrations. 

Remote sensing data are collected as radiance measurements over a finite spatial extent. This area is represented 
as a pixel in a remote sensing image. The size of the image pixel can range from a few metres for satellites such 
as WV-2, to 30 m for Landsat, and up to 1000 m for MODIS. The collected signal, which is usually converted to a 
reflectance, is essentially an average over the extent of the pixel. In regions where the scale of TSS variability is 
smaller than the size of an image pixel, comparisons between remotely sensed data and in situ ‘spot’ 
measurements can appear poor. Users of remote sensing data must be mindful that the remotely sensed 
geophysical products, such as TSS, may be considered as an ‘average’ value over a pixel area. An appropriate way 
to interpret remotely sensed versus in situ data is that each method is reporting different aspects of the same 
geophysical parameter. In situ data can provide a relatively high degree of confidence for one specific data point 
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in the region of interest, whereas a remotely sensed product provides a spatial perspective with high confidence 
in the spatial information and relative concentration differences. 

8.3 TSS Anomalies through time  

Figure 50 shows the annual TSS anomalies from 2002 to 2015. Positive anomalies are evident near the mouth of 
the Ashburton River and near to shore from 2003 to 2006 and 2013 and 2014. Small anomalies are also apparent 
in 2011 and 2012. There are also positive anomalies evident in the location of the spoil ground east of Thevenard 
Island in 2013 and 2104, and a feature joining the coastal dredge region to the spoil ground in 2014. There is also 
a slightly positive signal extending from the shore to beyond Thevenard Island for 2015.  

Figure 49 shows time series plots of the monthly, seasonal and yearly average TSS for a clear water area (CA), 
the spoil ground (SG) region, the river plume (RP), and the dredge area (DA). For CA the TSS time series shows a 
definite ‘wet/dry’ seasonal fluctuation with the mean monthly and seasonal TSS varying from approximately 0.5 
mg m-3 to 1.0 mg m-3 Considering the relative distance of the CA from a source such as the outflow from the 
Ashburton River, we assume that the seasonal increases in TSS are due to increased wind intensity and/or 
duration, likely associated with storm events, leading to resuspension of TSS. The RP time series is more variable, 
particularly at the monthly time scale. Short term peaks in TSS, one to two months in duration, occur 
intermittently, with extreme events noted in 2004 (~10 mg m-3), 2006 (~16 mg m-3), 2009 (~12 mg m-3) and 2015 
(~13 mg m-3). The period from 2011 to 2015 is characterised by more frequent moderate peaks in mean monthly 
TSS (~8 mg m-3). At the seasonal time scale, represented by the purple curve in Figure 49, the somewhat erratic 
monthly signal is smoothed to an approximately two-season-signal akin to the pattern in the CA. The annual TSS 
is relatively constant from 2002 until 2012 with an average of about 1.25 mg L-1. There is a significant spike in 
concentration at the start of 2011. There is a significant and prolonged increase TSS concentration from 2013 
until 2015, coinciding with the dredge activity. Figure 51 to Figure 64 shows monthly anomaly images from 2002 
until 2015. The impact of the dredge activities is evident during 2013 and 2014. 

8.4 Light at depth  

Section 5 introduced the concept of spectral light attenuation. Different wavelengths of light are attenuated by 
different amounts, depending on the amount of TSS in the water column, and the depth of the water. A common 
remote sensing product, often reported as a surrogate for turbidity, is K490, the attenuation of light at 490 nm. 
However, possibly of more relevance to biological or environmental studies is the attenuation of PAR in the water 
column. A knowledge of KPAR enables estimates of the proportion of surface light that reaches the substrate, or 
any depth of interest for that matter. Figure 66 shows examples of satellite derived light attenuation products. 
K490 is derived using the relationship described by Equations 9 and 10, and the KPAR product derived using similar 
relationships, but for all visible bands across the PAR spectrum. Both K490 and KPAR are derived from the same TSS 
data, therefore both attenuation images have the same spatial patterns, however the actual values of K are 
different for each. The scatter plot in Figure 66 compares the K values at each pair of pixels from the K490 and 
KPAR images. The scatter plot shows that there is a strong correlation between K490 and KPAR, as one would expect, 
but there is not a predictable relationship between the two. For low K values, corresponding to relatively clear 
water, KPAR is greater than K490. As the turbidity increases, corresponding to an increase in K, the value of KPAR 
decreases relative to K490. The relationship between KPAR and K490 may be observed in Figure 45. For low TSS 
values, corresponding to clearer waters, we observe that for all wavelengths the K values are low, with the lowest 
attenuation occurring for wavelengths around 450 nm to 600 nm. For these relatively clear waters, K490 is 
amongst the lowest of the spectral K values. As the TSS increases, K increases for all wavelengths, but the lowest 
attenuation occurs at longer wavelengths between approximately 550 nm and 700 nm. For these more turbid 
waters, K490 is now amongst some of the higher K values. The values for KPAR (not shown in Figure 45) associated 
with each curve in Figure 45 may be thought of as an average of the K values across the spectrum. Clearly, for 
low TSS values, K490 is below the average of the lowest curves, and for high TSS K490 is above the average of the 
highest curves. 
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Figure 66. Attenuation coefficient images for the Pilbara 
dredge area derived from MODIS Aqua TSS imagery for 
August 2013. Upper figure = K490, Middle Figure = Scatter plot 
of K490 and KPAR and lower Figure = KPAR. For low levels of K 
(approximately <0.5), KPAR is higher than K490. 
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Abstract: Knowledge of the concentration of total suspended sediment (TSS) in coastal waters is
of significance to marine environmental monitoring agencies to determine the turbidity of water
that serve as a proxy to estimate the availability of light at depth for benthic habitats. TSS models
applicable to data collected by satellite sensors can be used to determine TSS with reasonable accuracy
and of adequate spatial and temporal resolution to be of use for coastal water quality monitoring.
Thus, a study is presented here where we develop a semi-analytic sediment model (SASM) applicable
to any sensor with red and near infrared (NIR) bands. The calibration and validation of the SASM
using bootstrap and cross-validation methods showed that the SASM applied to Moderate Resolution
Imaging Spectroradiometer (MODIS)-Aqua band 1 data retrieved TSS with a root mean square
error (RMSE) and mean averaged relative error (MARE) of 5.75 mg/L and 33.33% respectively. The
application of the SASM over our study region using MODIS-Aqua band 1 data showed that the
SASM can be used to monitor the on-going, post and pre-dredging activities and identify daily TSS
anomalies that are caused by natural and anthropogenic processes in coastal waters of northern
Western Australia.

Keywords: total suspended sediment; remote sensing; coastal waters; semi-analytic
algorithm; MODIS

1. Introduction

The use of satellite remote sensing of coastal waters to derive their bio-geophysical properties
provides marine scientists and managers with a relatively affordable alternative to in situ based
sampling. Remote sensing has been used to map a wide array of coastal water’s constituents, such as
phytoplankton for biomass and primary production [1–4], coloured dissolved organic matter (CDOM)
for its effect on benthic habitats [5–7], and total suspended sediments (TSS) concentration as a measure
of water quality [8–12]. Many studies have been performed to derive TSS concentration via satellite
remote sensing using different platforms: Sea-viewing Wide Field-of-view Sensor (SeaWiFS) [13,14],
Landsat series [15–20], Medium Resolution Imaging Spectrometer (MERIS) [21–26], Moderate
Resolution Imaging Spectroradiometer (MODIS) [9,11,25,27–30], “Système Pour l'Observation de
la Terre” (SPOT) [31], and high resolution sensor IKONOS [32]. Most models are developed to estimate
TSS concentration by directly relating the remotely sensed reflectance with in situ measurements of
the TSS concentration using statistical analysis, linear and non-linear regression. These models may
use a single spectral band [16,33–38] or combinations of different spectral bands [15,21,28,39–42] with
regression analysis to predict the TSS concentration. Linear approximations from regression analysis

Remote Sens. 2016, 8, 556; doi:10.3390/rs8070556 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 556 2 of 23

are valid for relatively low TSS concentrations but as the TSS concentration increases the linearity
weakens and the reflectance saturates at high TSS concentration [13,43]. The saturation of reflectance
occurs at high TSS concentration because the increased water column scattering leads to a relative
enhancement in absorption/attenuation of the backscattered light [44]. In such cases, a non-linear
approximation such as a higher order polynomial or exponential function [13,29,35,45] is used to relate
the TSS concentration to reflectance. Combinations of different spectral bands in visible and near
infrared (NIR) spectral regions have been used to estimate the TSS concentration in coastal waters
that varied vastly in concentrations, from less than 11.0 mg/L [25,46–48] to very high, greater than
2000 mg/L [13,49,50]. Spectral bands in the blue and green spectral regions with [23,41,51,52] or
without (Jiang and Liu 2011 as cited in [28,53]) the combinations of red or NIR bands are used by many
researchers to explore the potential of TSS mapping using different band combinations. However, more
recently, single band estimations of the TSS concentration using the red or NIR bands have been widely
used in TSS algorithms because of the particulates dominance in total backscattering when compared
with the optical response of other components in these regions of the electromagnetic spectrum.

Empirical methods are most often used to estimate TSS concentration because of their simplicity
in development. However, the lack of a physical basis in empirical models limits their general
applicability to other than a local area where the algorithm was developed and ones confidence in
extrapolating the model to higher of lower concentration than those on which it was developed [54].
In recent decades, physical and semi-analytical models relating inherent optical properties (IOPs) of
water to apparent optical properties (viz. irradiance reflectance just beneath the water surface) are
used to estimate bio-geophysical parameters of interest [11,18,22,54–58]. A physical model, which
is based on radiative transfer theory, requires that the in situ inherent optical properties of water,
atmospheric conditions and several other factors are accurately known to enable the determination of
TSS concentration [44]. Use of semi-analytical models that combine both physical foundations and
statistical analyses provide a promising method to estimate TSS concentration with limited knowledge
of the in situ optical properties of the water body [57,59,60].

Semi-analytic TSS algorithms include model parameters that use in situ regional IOPs [54],
averaged IOPs representative of wider geographical locations [60] or IOPs inverted from site specific
satellite reflectance [61]. The site specific IOPs used in parameterizing these models are potentially
the best for retrieving site-specific TSS. However, notwithstanding the inherent uncertainties and
limitations of in situ IOP instruments, the acquisition of IOPs is also challenging due to financial,
logistical and time factors for rapid assessment of TSS. The dependence of IOPs on site-specific water
constituents limits the use of published IOPs from other areas as an alternative without compromising
the quality of the derived TSS concentration. The IOPs obtained by inverting the site specific satellite
reflectance are also not without limitations because the inverted IOPs are affected by not only the
uncertainties of IOPs from inversion models but also uncertainties of the reflectance product from
which the IOPs are derived. The study conducted by [62] to determine the uncertainties of IOPs
derived from semi-analytic models quantified that 20% of derived absorption coefficients were
outside the 90% confidence limit while for the backscattering coefficient ~50% were outside the
90% confidence limit.

In this study, we proposed a semi-analytic sediment model (SASM) that had a basis in radiative
transfer theory and was locally tuned to the regional waters of northern Western Australia for
MODIS-Aqua band 1 to monitor TSS concentration in the region. The SASM was applied to the
coastal waters of northern Western Australia using MODIS-Aqua 250 m data for mapping the TSS
concentration in the region, which would serve as a baseline in future water quality monitoring of
the region.
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2. Materials and Methods

2.1. Study Site

Onslow waters fall within the Pilbara Coast West (from Exmouth to Karratha) of Western
Australian centred at 21˝3510011 S and longitude 115˝0510011 E (Figure 1) and experience an annual
average temperature of 29.2 ˝C and mean annual rainfall of 296 mm [63]. The discovery of the
Wheatstone gas field off the coast of Onslow in 2004 has led to the construction of 25 million tonnes
per year gas processing plants [64] with the dredging of a shipping access channel to the processing
plants beginning from May 2013 till end of September 2013 in the location of the dredge area (DA) in
Figure 1 [65]. The dredging operation was expected to generate 45 million m3 of dredge spoil [65],
and the activity has some level of impact on the marine ecosystem in the region.
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2.2.1. The DALEC Radiometer  

The DALEC, a hyperspectral radiometer developed by “In situ Marine Optics” is used routinely 
for autonomous ship-based measurement of remote sensing reflectance [66]. The DALEC takes 
coincident measurements of downwelling irradiance (Ed), upwelling radiance (Lu) and sky radiance 
(Lsky) with each sensor collecting spectral information in 256 spectral bins ranging from 380 nm to 900 
nm. Measurement of radiance from the Lu and Lsky sensors and irradiance from the Ed sensor can be 

Figure 1. True colour 15 m pan sharpened Landsat OLI (Operational Land Imager) imagery showing
study site and the location of the sampling stations. Red squares represent the location of dredge area
(DA), spoil ground (SG), and clean area (CA) used in the temporal analysis. Red, purple and green
filled circles are the locations of water sampling stations in 2013, 2014 and 2015 respectively.

2.2. In Situ and Remote Sensing Data

The satellite-based remote sensing data for this study were MODIS-Aqua data
spanning the years 2013 to 2015, acquired as Level 1B data from the NASA LAADS web
(http://ladsweb.nascom.nasa.gov/). The in situ data of reflectance samples was collected using a
hyperspectral radiometer, the “Dynamic above-water radiance and irradiance collector” (DALEC) and
simultaneously, water samples were gathered for TSS measurements. In total three field campaigns
were carried out in the study site collecting a total of 130 water samples. First two field campaigns
were carried out on board the RV Linnaeus, operated by the Commonwealth Scientific and Industrial
Research Organisation (CSIRO) during October 2013 and June 2014. The third field campaign was
carried out in July 2015 on the Australian Institute of Marine Science (AIMS) RV Solander (Figure 1).

2.2.1. The DALEC Radiometer

The DALEC, a hyperspectral radiometer developed by “In situ Marine Optics” is used routinely
for autonomous ship-based measurement of remote sensing reflectance [66]. The DALEC takes
coincident measurements of downwelling irradiance (Ed), upwelling radiance (Lu) and sky radiance
(Lsky) with each sensor collecting spectral information in 256 spectral bins ranging from 380 nm to
900 nm. Measurement of radiance from the Lu and Lsky sensors and irradiance from the Ed sensor
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can be used to compute remote sensing reflectance (Rrs) using the ad hoc formula of Mobley [67], as
shown by Equation (1),

Rrspλq “
Lupλq ρLskypλq

Edpλq
(1)

where ρ is a correction factor which is dependent on sky radiance, solar zenith angle, wind speed
and the instrument’s viewing angle [67]. The value of ρ was set to 0.022 as prescribed by Mobley [67]
for uniform sky conditions and wind speed less than 5 m¨ s´1. DALEC data were collected between
10:00 am and 3:00 pm local time when cloud cover was below 10%, the wind speed less than 5 m¨ s´1

and the sea waves and swell were below 0.5 m.
As recommended by Mobley [67], the DALEC’s azimuthal viewing angle was maintained at 135˝

relative to the solar direction and the viewing angles of the Lu and Lsky sensors were set at 40˝ off nadir
and zenith respectively to minimize the sun glint and instrument shading. The necessary adjustment
to the orientation of the DALEC was carried out as and when the heading of the ship changed during
the course of the measurements.

2.2.2. DALEC Data Collection and Analysis

The DALEC was mounted on the bow of the research vessel using a horizontal pole to a distance
such that disturbance from the wake of the ship was avoided. The DALEC is capable of running
continuously, and collecting individual spectra at integration times selected automatically in response
to illumination conditions. On average DALEC was able to collect 11 reflectance spectrum per minute.
The DALEC was operated whilst the boat was underway and also when “on station”, with the on
station periods lasting at least 5 min to allow collection of TSS samples.

Despite taking necessary steps discussed above as recommended by Mobley [67] to avoid specular
reflection of sunlight from some wave facets for the reflectance measurements, still some spectra can be
contaminated by the sun glint. These sun glint affected spectra are removed from the time series of data
prior to subsequent analysis. After elimination of sun glint contaminated spectra there were at least
5 reflectance spectra per stations every minute. Typically, an average spectrum is derived from a set of
measurements coinciding with the collection of the TSS sample. Analysis of the variation in reflectance
spectra, by calculating the standard deviation for time periods of ˘1 min, ˘3 min, and ˘5 min from
time when TSS sample was collected, showed that the standard deviation for each set of data was
comparable. On average, we selected ˘3 min as the standard averaging period for all stations.

2.2.3. Water Sample Collection and Analysis

During the first two field trips we collected a minimum of two 1 litre sample bottles of water from
~0.5–1 m depth at each station while the boat was stationary. For the third field trip, we collected water
samples using an underway seawater sampling system on the AIMS RV Solander, which has a sea
water intake system at a depth of ~1.9 m below the ocean surface.

All the water samples collected where processed for TSS concentration using the gravimetric
method within six hours from the time the water samples were collected. Whatman GF/F filters
(47 mm diameter, nominal pore size 0.7 µm) were pre-prepared in the laboratory by rinsing each filter
with 50 mL of distilled/deionized water followed by drying at 60 ˝C in an oven for over 12 h. The
water samples were filtered using low vacuum pressure and the filter flushed with 50 mL of deionized
water to remove residual salt. The filtered TSS samples were stored in a cool dry place until being
taken back to the laboratory where they were dried for at least 24 h at 60 ˝C. The dried filters were
then repeatedly measured until the measured weight was constant within the tolerance weight limit of
0.001 mg/L.

Analysis of TSS samples collected during the third field trip showed that the TSS did not correlate
with the reflectance measurements or other optical measurements. Collecting the water samples from
a depth of ~1.9 m might have resulted in the in situ TSS concentration being different from the actual
expected value at the surface (~0.5–1.0 m) if the water column is stratified. In fact, observations from
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acoustic instruments did often show strong stratification, with suspended sediment loads increasing
with depth. Thus, data from the third field trip were excluded from the algorithm development or TSS
product validation in this study with the exception of DALEC measurements of the remote sensing
reflectance to be used in the validation of the atmospheric correction process because DALEC data on
6 July 2015 were acquired within 15 min from the MODIS-Aqua overpass. The details of water column
stratification on the MODIS sensor at band 1 is discussed in Appendix A.

2.2.4. Satellite Data Acquisition

MODIS-Aqua level 1B images containing geo located at-aperture radiances for all 36 spectral
bands were acquired from NASA LAADS web for the dates corresponding to all the field trips for the
validation of the MODIS-Aqua derived TSS. The images were assessed for sun glint contamination
and cloud cover over the study sites and found to be free of cloud and sun glint. In addition to
the aforementioned MODIS-Aqua images, additionally 247 MODIS-Aqua images free of cloud and
sun glint in the study site for the year 2013 coinciding with the dredge operation to construct access
channels for a gas processing plant by Chevron Pty Ltd. (Perth, Austrilia) were also acquired for time
series analysis. All MODIS-Aqua 1B images were processed for atmospheric correction, water pixel
extraction for the validation, and spatial consideration for the temporal analysis.

2.2.5. Atmospheric Correction

For the atmospheric correction, the top of the atmosphere (TOA) radiance from the MODIS-Aqua
Level 1B products were converted to atmospherically corrected, at-surface remote sensing reflectance
using the multi-sensor Level 1 to Level 2 generator (l2gen) function which can be run as a stand-alone
program or accessed through the SeaDAS 7.2 interface [68]. Among many atmospheric correction
algorithms available for data processing in SeaDAS we considered two, the standard atmospheric
correction method for MODIS high resolution data SWIR [69], and the MUMM [70] atmospheric
correction method, because previous studies [56,70–72] have demonstrated that these two atmospheric
correction algorithms are effective for turbid coastal waters. The SWIR atmospheric algorithm estimates
the aerosol reflectance using the 1240 nm and 2130 nm MODIS bands while the MUMM atmospheric
correction is based on the spatial homogeneity of water-leaving radiances and aerosol ratios for the
MODIS 748 nm and 869 nm bands [71].

Both the MODIS high resolution and MUMM atmospheric correction were applied to
MODIS-Aqua Level 1B data for 6 July 2015 because all the DALEC Rrs data collected on 6 July 2015
were within 15 min of MODIS overpass time compared to in excess of at last 90 min on other sampling
dates. A comparative analysis of Rrs data from the two atmospheric correction methods considered
(results discussed in Section 3.2) showed that MUMM is better at retrieving Rrs when compared with
the standard MODIS high resolution SWIR atmospheric correction method for our study site. All
MODIS-Aqua data were subsequently processed with the MUMM atmospheric correction approach.
However, analysis of the products showed that MUMM’s default cloud screening band at 869 nm
caused the turbid plumes to be flagged as clouds, thus we applied the 2130 nm band instead.

2.2.6. Water Pixel Extraction and Analysis

For water pixel extraction, we used the geographical location of the in situ TSS sampling stations
that were within ˘30 min, ˘60 min and ˘90 min from MODIS-Aqua overpass time. Herein, data are
referred to as Aqua Validation Data (AVD) and followed by the suffix 30, 60 and 90 for data collected
within ˘30 min, ˘60 min and ˘90 min of MODIS-Aqua overpass respectively. For the AVD30, AVD60
and AVD90 there were 18, 28 and 45 match-up pairs between MODIS-Aqua derived TSS and in situ
TSS respectively. TSS from each location at the validation sites were extracted using the SeaDAS pixel
extraction tool for window sizes of a single pixel, 3 ˆ 3 pixels, and 5 ˆ 5 pixels to account for the pixel
variability in the error analysis.
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For the selection of the location and the spatial extent in the MODIS derived TSS for performing
the time series analysis, we focused on three different regions in the study site after careful analysis of
the pan-sharped 15 m Landsat imagery to confirm appropriate locations to represent (1) clean area
(CA); (2) dredge area (DA); and (3) spoil ground (SG). All three areas of interest were confined to
a spatial extent of 25 km2 after visually examining the high spatial resolution Landsat images. The
CA was selected away from the main dredging area and further off the coast, the DA was selected at
a location coincident with dredging operations, and the SG was selected at a location where spoils
from the dredge operations were dumped. MODIS-derived TSS concentrations corresponding to each
location were extracted for MODIS-Aqua time series analysis. The spatial extent and the geographical
locations of CA, DA and SG are shown in Figure 1.

2.3. SASM Model Formulations

The formulation of the SASM describes the relationship between TSS concentration and ocean
reflectance, thus providing a means to estimate TSS concentration using remote sensing methods.
The approach is based on general radiative transfer theory and the Quasi Analytic Algorithm of
Lee, et al. [73].

2.3.1. Reflectance Model

Gordon, et al. [74] showed subsurface remote sensing reflectance (rrs), is related to the total
absorption coefficient, a (λ), and total backscattering coefficient, bb (λ), through:

rrspλq «
2
ÿ

i“1

gi

„

bbpλq

apλq ` bbpλq

i
(2)

The coefficients gi depend on solar angle, scattering phase function, bidirectional reflectance
effects and water surface conditions. Gordon, et al. [74] gave g1 = 0.0949 and g2 = 0.0794 for case-1
waters and Lee, et al. [59] demonstrated that g1 = 0.084 and g2 = 0.17 are more suitable for highly
scattering coastal waters. In this study, we adopted the values of g1 and g2 provided by Lee, et al. [59].

The Rrs(λ) which are measured by above-water radiometer can relate to rrs(λ) using the
relationship from Lee, et al. [59] as shown in Equation (3).

rrspλq “
Rrspλq

p0.52` 1.7Rrspλqq
(3)

The total absorption coefficient is expressed as the sum of absorption coefficients for pure sea
water (aw(λ)), particulate matter (ap(λ)), phytoplankton pigments (aϕ(λ)), and coloured dissolved
organic matter (acdom(λ)).

apλq “ appλq ` awpλq ` aϕpλq ` acdompλq
loooooooooooooooomoooooooooooooooon

aother

(4)

The total backscattering coefficient is expressed as the sum of backscattering coefficients for pure
sea water (bbw(λ)), particulates (bbp(λ)), and phytoplankton pigments (bbϕ(λ)).

bbpλq “ bbwpλq ` bbppλq ` bbϕpλq (5)

Equation (2) representing the subsurface remote sensing reflectance as a function of the IOPs can
be rewritten as a quadratic equation as follows:

rrspλq “ g1xpλq ` g2x2pλq (6)
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where

xpλq “
bbpλq

apλq ` bbpλq
(7)

2.3.2. Inherent Optical Properties Model

In the IOPs model we represent the ratio of bb(λ) to a(λ) as ω1b(λ) as follows:

ω1bpλq “
bbpλq

apλq
(8)

For the case of turbid water, we adopt the following assumptions:

‚ For high-scattering coastal waters, bb(λ) is mainly due to the backscattering coefficient from
particulate matter and water molecules, the backscattering coefficient contributions from other
constituents are insignificant [75]. Further, in the red and NIR regions of the spectrum the
scattering by water molecules becomes insignificant, thus we can make an assumption that total
backscattering in the red and NIR regions is due to particulate matter only. Equation (5) can be
approximated as:

bbpλq « bbppλq (9)

The assumption in Equation (9) can potentially be undermined for extreme concentrations of
chlorophyll during phytoplankton blooms because in such cases, the backscattering from chlorophyll
can be significant and cannot be ignored. HydroLight simulations show that even in the extreme
case of high chlorophyll concentration (10 mg¨m´3) the backscattering contribution from chlorophyll
constitute backscattering equivalent of TSS concentration of 3.4 mg/L and 3.6 mg/L at MODIS band 1
and 2 respectively. The backscattering contribution from pure water is calculated to be ~20% and
~9% of backscattering coefficient of MODIS band 1 and band 2 respectively than the TSS backscattering
contribution even at TSS concentration of 0.2 mg/L. The coastal waters in Western Australia typically
shows a seasonal cycle in chlorophyll with average low values of 0.24 mg¨m´3 during summer and
peaks in June with average values of 0.69 mg¨m´3 [76]. Considering the concentration of chlorophyll
is typically less than 1 mg¨m´3 and its backscattering effect minimal even during the peak seasons
in coastal waters of Western Australia, we can assume Equation (9) is valid for both MODIS band 1
and band 2. An added bonus that the aforementioned MODIS bands are both capable of is a 250 m
spatial resolution.

‚ Following [77,78] we can assume the particulate backscattering coefficient (bbp(λ)) and absorption
coefficient (ap(λ)) to be proportional to TSS concentration, via appropriate constants—the specific
particulate backscattering coefficient (bbp

*(λ)) and specific particulate absorption coefficients
(ap

*(λ)).
bbppλq “ bbp

˚
pλq ˆ TSS (10)

appλq “ ap
˚pλq ˆ TSS (11)

Taking into account the aforementioned assumptions, we can formulate Equation (8) into

TSSpλq “
C1pλqω

1
bpλq

1´ C2pλqω
1
bpλq

(12)

where C1(λ)=aother(λ)/bbp
*(λ) and C2(λ)=ap

*(λ)/bbp
*(λ).

Essentially, Equation (12) is equivalent to Equation (5) of Nechad, Ruddick and Park [60]. However,
the difference between the two models lies in the approximation of rrs(λ) where we use the second order
approximation of Gordon, et al. [74] and Nechad, Ruddick and Park [60] make use of the first order
approximation of rrs(λ) from [74]. The difference in rrs(λ) between Nechad, Ruddick and Park [60]
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and the SASM model stems from the computation of ω1b(λ) by each individual model. The details of
reflectance models comparison between Nechad, Ruddick and Park [60] and SASM is presented in
Supplementary Material.

2.3.3. Consolidation of Reflectance and Inherent Optical Properties Model

Equation (7) can be established in terms of ω1b(λ) using the relationship from Equation (8)
as follows:

xpλq “
ω1bpλq

1`ω1bpλq
or ω1bpλq “

xpλq
1´ xpλq

(13)

Substituting Equation (13) into Equation (12) gives:

TSSpλq “
C1pλq

´

xpλq
1´xpλq

¯

1´ C2pλq
´

xpλq
1´xpλq

¯ (14)

where x(λ) is the positive root of the solution of the quadratic function shown as Equation (6), which is
as follows:

xpλq “
´g1 `

b

pg1q
2
` 4g2rrspλq

2g2
(15)

The constants C1 (λ) and C2 (λ) in Equation (14) will be derived using regression analysis between
in situ TSS measurements and x (λ).

2.4. Conversion of DALEC Remote Sensing Reflectance to Sub-Surface Remote Sensing Reflectance

Fact that DALEC and MODIS have different spectral resolutions and the SASM uses rrs in its
model, it is necessary to convert DALEC Rrs to MODIS equivalent below-water surface rrs. Thus,
in situ DALEC-measured Rrs were convolved to MODIS band 1 (B1) and band 2 (B2) equivalent
Rrs using spectral response functions of the MODIS-Aqua following the method described in [60].
The MODIS B1 and B2 equivalent Rrs were then converted to rrs using the relationship defined in
Equation (3). Herein, in situ DALEC Rrs convolved to MODIS band equivalent Rrs and converted to
sub-surface remote sensing reflectance will be referred as rrs(B1) and rrs(B2) for MODIS band 1 and
band 2 respectively.

2.5. Regional Empirical Model

Many regional algorithms that are used in estimating the TSS concentration from remote sensing
image-derived reflectance or in situ reflectance use either linear or exponential models [79]. To compare
the performance of the SASM with empirical models the simple form of linear and exponential models
were selected as represented by Equations (16) and (17) respectively.

TSSpλq “ axpλq ` b (16)

TSSpλq “ aebxpλq ` c (17)

where x is rrs(B1) and rrs(B2) and various combinations of the two bands and a, b, and c are coefficients
derived from regression analysis between TSS and x.

2.6. Model Calibration and Model Uncertainty Estimates

To calibrate the SASM and empirical models in Equations (14), (16), and (17) we used TSS and
rrs(B1) and rrs(B2) and various combinations of the two bands from the data of the first two field
trips. From the 69 TSS samples collected during the first two field campaigns only 48 stations afforded
the appropriate match-up pair with Rrs data collected by the DALEC. For all TSS and Rrs match-up
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pairs, the TSS concentrations varied from a minimum of 2.4 mg/L to a maximum of 69.6 mg/L
and mean of 9.89 mg/L. In calibrating a model, it is desirable to have separate data sets for model
calibration and testing collected independently of each other. However, due to the limitation of only
acquiring 48 match-up pairs, we decided to use all 48 pairs for model calibration and validate using the
leave-one-out cross-validation (LOOCV) procedure of Stone [80]. The LOOCV method is a commonly
used statistical method in small sample size to allow for whole samples to be used in training and
validations [81]. In this procedure, one pair of data is left as a validation data set and the remaining
data are used in calibrating the model. This procedure is repeatedly executed excluding the pair
that has been picked in previous validations and recalibrated using the new remaining data until all
48 pairs are validated.

Using all 48 match-up pairs the SASM in Equation (14) and empirical models in Equations (16)
and (17) were calibrated. From the results discussed in Section 3.2, the different bands or their
combinations were not at par in retrieving TSS when compared with the MODIS-Aqua band 1, thus we
selected MODIS-Aqua band 1 for this study. Finally, all three calibrated models from Equations (14),
(16), and (17) are presented below for MODIS-Aqua band 1.

TSSpB1q “
23.47ˆ

´

xpB1q
1´xpB1q

¯

1´ 0.69ˆ
´

xpB1q
1´xpB1q

¯ , pR2 “ 0.85q (18)

TSSpB1q “ 612.72ˆ rrspB1q ´ 4.83, pR2 “ 0.85q (19)

TSSpB1q “ 2.41ˆ expr40.12ˆ rrspB1qs ` 0.89, pR2 “ 0.85q (20)

The LOOCV method provides overall model accuracy but does not produce assessment of
uncertainty in the results derived by the model [81]. The bootstrap method of Efron [82] as
discussed in [81] provides a means to generate the confidence in models as a result of uncertain
determination of model parameters, uncertainties in in situ measurements, and assumptions in the
model formulations [81]. Following Efron [82], 1000 sets of data were generated using re-sampling via
a re-substitution method, and 65% confidence limits and upper and lower bound of the derived TSS
products were generated for all three models considered. The 65% confidence interval was obtained
by the percentile method by taking the upper and lower 17.5% (the 17.5% and 82.5% quantiles) of the
results from the bootstrap distribution.

2.7. Accuracy Assessment for Model Performance

The accuracy assessment was performed by comparing model-derived and in situ measurements
with Root Mean Square Error (RMSE), the correlation coefficient (R), and Mean Absolute Relative Error
(MARE), which are defined in Equations (21)–(23).

RMSE “

g

f

f

f

e

n
ř

i“1
pxi ´ yiq

2

n
(21)

r “
n
ř

xiyi
ř

xi
ř

yi
b

n
ř

xi
2 p

ř

xiq
2
b

n
ř

yi
2 p

ř

yiq
2

(22)

MARE “

n
ř

i“1
|pxi ´ yiq {yi|

n
ˆ 100% (23)

where n is the total number of samples, xi is the model-derived TSS and yi is the measured TSS.
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3. Results and Discussion

3.1. Spectral Characterization of Field Spectral Measurements

The DALEC measured spectral reflectance signatures for different concentrations of TSS show that
in the blue region of the spectrum (400–495 nm) there is little distinct separation between Rrs spectra
for low and high TSS concentrations (Figure 2). In the green (495–570 nm) and the yellow (570–590 nm)
spectral regions there are general trends in the increment of the magnitude of Rrs with increases in
TSS concentration. In addition, there is a tendency for the wavelength of maximum Rrs to increase
with increasing TSS concentration, from about 570 nm at 3 mg/L to 590 nm at 69.6 mg/L. For the red
spectral region (620–750 nm), there is a distinct increment of the magnitude in Rrs spectra with increase
in TSS concentration. For the case of the NIR region (>750 nm) there is no clear difference among Rrs

spectra for TSS less than 13 mg/L, but for higher TSS there is a distinct increment in magnitude of Rrs

with the NIR Rrs exhibiting an increasingly more distinct peak at ~810 nm.

Remote Sens. 2016, 8, 556 10 of 23 

 

( )
%100

/
MARE 1 ×

−
=


=

n

yyx
n

i
iii

 
(23) 

where n is the total number of samples, xi is the model-derived TSS and yi is the measured TSS. 

3. Results and Discussion 

3.1. Spectral Characterization of Field Spectral Measurements  

The DALEC measured spectral reflectance signatures for different concentrations of TSS show 
that in the blue region of the spectrum (400–495 nm) there is little distinct separation between Rrs 
spectra for low and high TSS concentrations (Figure 2). In the green (495–570 nm) and the yellow 
(570–590 nm) spectral regions there are general trends in the increment of the magnitude of Rrs with 
increases in TSS concentration. In addition, there is a tendency for the wavelength of maximum Rrs 
to increase with increasing TSS concentration, from about 570 nm at 3 mg/L to 590 nm at 69.6 mg/L. 
For the red spectral region (620–750 nm), there is a distinct increment of the magnitude in Rrs spectra 
with increase in TSS concentration. For the case of the NIR region (>750 nm) there is no clear 
difference among Rrs spectra for TSS less than 13 mg/L, but for higher TSS there is a distinct increment 
in magnitude of Rrs with the NIR Rrs exhibiting an increasingly more distinct peak at ~810 nm. 

 

Figure 2. In situ DALEC spectral reflectance plots for different ranges of TSS concentration. 

The selection of the red band and NIR bands for SASM are in agreement with [61] in considering 
band’s responsiveness to TSS concentration in establishing a good retrieval model. In our spectral 
data, the reflectance at the red and NIR bands responds well with TSS concentration, as shown by 
the distinct increase in the magnitude of red band reflectance with increase in TSS concentration for 
all TSS concentrations, while the NIR band shows distinct increments for TSS concentrations greater 
than 13 mg/L. The correlation coefficients (r) between Rrs and TSS at the blue, green, red, and NIR 
regions of the spectrum were 0.66, 0.42, 0.84, and 0.77 respectively, indicating the presence of a strong 
linear relationship between reflectance and TSS at red and NIR wavelengths.  

3.2. SASM Calibration and Validation  

The validation of the results for rrs(B1) and rrs(B2) and various band combination results obtained 
from the LOOCV method are shown in Table 1. The results in Table 1 show that rrs(B1) alone has 
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Figure 2. In situ DALEC spectral reflectance plots for different ranges of TSS concentration.

The selection of the red band and NIR bands for SASM are in agreement with [61] in considering
band’s responsiveness to TSS concentration in establishing a good retrieval model. In our spectral
data, the reflectance at the red and NIR bands responds well with TSS concentration, as shown by the
distinct increase in the magnitude of red band reflectance with increase in TSS concentration for all
TSS concentrations, while the NIR band shows distinct increments for TSS concentrations greater than
13 mg/L. The correlation coefficients (r) between Rrs and TSS at the blue, green, red, and NIR regions
of the spectrum were 0.66, 0.42, 0.84, and 0.77 respectively, indicating the presence of a strong linear
relationship between reflectance and TSS at red and NIR wavelengths.

3.2. SASM Calibration and Validation

The validation of the results for rrs(B1) and rrs(B2) and various band combination results obtained
from the LOOCV method are shown in Table 1. The results in Table 1 show that rrs(B1) alone has better
results than rrs(B2) or combinations of the two bands. The poor performance result for rrs(B2) may be
because most of the available TSS measurements in our data set were lower. At low TSS concentrations
and in the NIR wavelengths where the reflectance measurements are relatively low, results may be
better modelled with a simple linear model which works well in low TSS concentrations [27,47].
However, in the waters with higher TSS concentrations and spectral regions where reflectance are
high, the reflectance are not linearly related to the TSS concentration [52] so a different approach than
a simple linear regression has to be taken. Thus, applying the SASM in MODIS band 1 to a region with
low TSS concentration can avoid the lower reflectance issues in MODIS band 2 and also the SASM can
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address the problem of non-linearity between TSS and reflectance when using a simple linear model
for higher TSS concentrations.

Table 1. Validation results from the LOOCV results for the SASM for MODIS-Aqua band 1, band 2 and
their combinations.

Bands rrs(B1) rrs(B2) rrs(B2/B1) rrs((B1 + B2)/2)

RMSE (mg/L) 5.75 28.66 15.95 6.32
MARE (%) 33.33 82.90 102.78 38.52

r 0.89 ´0.51 0.08 0.86

The results of the SASM uncertainty obtained using the bootstrap method discussed in Section 2.6
is presented in Figure 3. The upper and lower bounds in Figure 3, shown by the grey shading
represent the highest and the lowest TSS values obtained in the bootstrap results. The upper and lower
bounds simply express the model uncertainty in deriving TSS concentration because of uncertainty
in estimating model parameters from in situ data. The 65% confidence limit represented by dashed
lines in Figure 3 defines a narrow band and closely follows the model curve indicating that the TSS
retrieved by the SASM is closer to the expected TSS from the SASM. In Figure 3, the uncertainty
estimates defined by the 65% confidence limits and upper and lower bounds are smaller at the lower
concentration end of the curve and wider at the middle and upper part of the concentration curve. The
smaller uncertainty at low TSS concentration is due to the availability of larger numbers of match-up
(Rrs and TSS) pairs while the higher uncertainty at high TSS is due to the limited number of match-up
pairs. The future endeavour in collecting in situ TSS and Rrs should be focused on collection of more
match-up pair that are evenly distributed throughout the range of different TSS concentrations.
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Figure 3. The SASM curve for rrs(B1) (Equation (18)) is shown by the solid line. The in situ data points
are shown by open circles. The 65% confidence limits obtained through the bootstrap method are shown
by dashed lines. The greyed region represents the upper and lower bound for 1000 bootstrap runs.

3.3. SASM Comparison with Empirical Models

The accuracy assessment results for the SASM, the linear, and the exponential models obtained
through the LOOCV process described in Section 2.6 are presented in Table 2. The results show that
the SASM and the exponential models perform relatively better than the simple linear model in all
three accuracy assessment categories. The comparison between the SASM and the exponential model
are quite similar, however the SASM performs marginally better than the exponential model in all
three assessment categories. Figure 4 shows TSS values derived from each model using the LOOCV
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method with respect to the in situ TSS values. Assessment of Figure 4 shows that all three models
underestimate TSS when compared with in situ TSS for TSS greater than 30 mg/L. We can speculate
that underestimation is due to our calibration data set having more low TSS values, 75% of in situ TSS
data collected were less than 10 mg/L. Further, in the region where TSS were less than 30 mg/L there
is no clear case supporting which model estimated TSS values better considering the large spread in
the model-derived TSS by all three models.

Table 2. Results for the SASM, linear and exponential models for MODIS-Aqua band 1.

Model MARE (%) RMSE (mg/L) r

SASM 33.33 5.75 0.89
Linear 59.17 7.39 0.80

Exponential 39.29 6.16 0.87
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The results of model uncertainty defined by the upper, lower, and 65% confidence limits generated
by the bootstrap method discussed in Section 2.6 are presented in Figure 5a,b for the linear and
exponential models respectively. In addition to the confidence interval and the extreme bounds of
each model, the relative errors (RE) for the lowest, median, and the largest TSS concentrations from
the bootstrap distribution are also presented in Table 3 for the SASM, linear, and exponential models.
The median value of the bootstrap results was used because of the random re-sampling procedure
employed in the bootstrap methods results of extreme cases (possibly outliers) that affects the mean
of whole distributions. The median RE value for all three models are similar to the MARE from the
LOOCV method (shown in Table 2) which agrees with the results from the bootstrap method.

Table 3. Absolute relative error for the SASM, linear and exponential models derived from the bootstrap
distribution of the TSS results.

Model Lowest RE (%) Median RE (%) Largest RE (%)

SASM 1.20 30.93 228.15
Linear 2.20 53.64 349.90

Exponential 1.03 38.39 195.55
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Figure 5. The empirical model curve for rrs(B1) is shown by the solid line, in situ data points shown
by open circles for both (a) the linear model and (b) the exponential model. In both the figures the
65% confidence limit obtained through the bootstrap method are shown by dashed lines. The greyed
region represents the upper and lower bound for 1000 bootstrap runs. The upper and lower bound
for exponential model has been limited to 95% CI because few high values of TSS were in excess of
several thousand mg/L. The box at the bottom right in (a) and middle left (b) is a blow out of the
TSS < 10 mg/L and rrs(B1) < 0.025 sr´1.

From the results in Table 3 we observe that the lowest and largest RE is slightly better for the
exponential model when compared with the SASM, but the mean RE is better for the SASM when
compared with the exponential. The RE results of the linear model are all lower than the SASM and
exponential model in all three categories of RE results. The bootstrap results of RE indicate slightly
better performance for the exponential model. However, on considering the 65% confidence interval
and upper and lower bounds of the bootstrap results in Figures 3 and 5 we observe that the SASM has
a smaller 65% confidence interval and significantly smaller upper and lower bounds when compared
with the exponential model.

Considering the retrieval error of TSS concentrations from MODIS algorithms is in the range
of ~18.0% to ~61% for many studies conducted in the last decade, all three models looks feasible in
estimating the TSS concentrations in the coastal waters of northern Western Australia. However, we
must exercise caution when using any model, particularly when extending the application beyond the
limits of the calibration data. A simple linear regression model depends on the linearity between TSS
concentration and reflectance, which is observed to weaken as the turbidity of the water increases [52].
Without the proper calibration data for lower reflectance values, the linear model starts to yield negative
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TSS values at Rrs of ~0.0042 sr´1 in MODIS band 1 and underestimates TSS at higher Rrs values, as
shown in Figure 5a. The exponential model gives closer values to the SASM than a simple linear model.
Similar result between the SASM and exponential model might be because the non-linear relationship
of reflectance and TSS concentration given by bio-optical models closely approximates the exponential
curve [57]. However, we must caution using the exponential model within proper calibration data
because for even zero Rrs the exponential model in our study gives minimum value of 3.308 mg/L
for and over estimates TSS at higher Rrs values. In reality, even with the zero contributions from the
constituents in the water there is still backscattering from water molecules, which when modelled
using HydroLight gives Rrs of ~0.000085 sr´1 in MODIS band 1 for no contributions from in-water
constituents. At this Rrs value the SASM, linear and exponential models give TSS of 0.002 mg/L,
´4.778 mg/L, and 3.308 mg/L respectively. In real world applications, the values provided by the
linear and exponential models are not theoretically sensible whereas those TSS values provided by the
SASM are closer to the values we would expect for near zero reflectance.

Considering the results from the LOOCV and bootstrap methods, the SASM is more suitable
for the application of deriving TSS concentration using MODIS band 1 in coastal waters of northern
Western Australia. However, when applied to sensors other than MODIS the SASM model would
need to be recalibrated for that sensor. The collection of hyperspectral Rrs measurements using the
DALEC and knowledge of the sensor band response functions makes this possible. We also have to be
mindful that the error in TSS concentration is also impacted by factors such as atmospheric correction
and sensor calibration, where a 5% error in radiance at-sensor results in 50 percent error in Rrs [23].

3.4. Application to MODIS Imagery

3.4.1. Atmospheric Correction

The difference between the standard MODIS high resolution SWIR and MUMM atmospheric
correction methods was significant, as shown in Figure 6 for 6 July 2015 Rrs data. The default MODIS
l2gen atmospheric correction method for high resolution MODIS imagery underestimated Rrs on
average by 39.2% while MUMM underestimated by only 5% in MODIS band 1 when compared with
DALEC Rrs.
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The analysis of the MODIS-Aqua band 1 data corresponding to AVD30, AVD60, and AVD90 to
estimate the error in reflectance derived from the satellite resulted in AVD30 with the least error in
satellite derived reflectance with MARE of 9.7% while the highest is for AVD90 with 27.58%, and
AVD60 with MARE of 21.99%. The correlation coefficients between DALEC Rrs and MUMM derived
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Rrs were 0.98, 0.86, and 0.67 for AVD30, AVD60 and AVD90 respectively. Analysis of these results
shows that as time the difference between satellite sensors and DALEC measurement decreases the
difference between DALEC measured Rrs and MODIS Rrs also decreases. These results support the
view amongst the remote sensing community that comparison between satellite sensor and in situ
measurement can be improved by narrowing the time difference between the two. For this study,
we used respective error for each AVD to account for the atmospheric correction error in subsequent
analysis of the results in estimation of the TSS concentration.

3.4.2. MODIS-Aqua Validation

In order to consider the validation of the SASM results against the in situ TSS data, we have
considered the contribution of two sources of error on the retrieval of TSS concentrations from
MODIS-Aqua reflectance, namely the errors in the calibration of model parameters and errors
arising from atmospheric correction. Notwithstanding the errors from other sources specifically,
such as satellite sensor calibration, time difference between satellite image acquisition, and errors in
in situ TSS measurements, the total error for AVD30, AVD60, and AVD90 were 43.03%, 55.32%, and
60.91% respectively. The total error is obtained from the following sources: MARE of 33.33% as a
model error from the SASM in MODIS band 1 plus respective error for the AVD30, AVD60 and AVD90
from the atmospheric correction process presented in Section 3.4.1.

The validation of the TSS concentration derived using SASM in MODIS-Aqua band 1 shows that
AVD30 has the better performance with a MARE of 35.39% while AVD60 and AVD90 had MARE of
94.38% and 78.62% respectively. As the duration between satellites overpass timing and measurement
increases, the mismatch between the in situ and satellite derived TSS also increases depending on
the spatial variability and water dynamics influenced by ocean currents and wind. To account for
the source of error of TSS due to time difference between satellite image acquisition and in situ
measurement, we calculated the average TSS for different pixel window widths. Figure 7a–c show
the validation results between the observed TSS and SASM-derived TSS for AVD30, AVD60 and
AVD90 respectively. As the time difference between MODIS-Aqua overpass and in situ data collection
increases the spatial variability in the SASM-derived TSS also increases, as indicated by the error bars
displayed on each data point tending to lengthen as we move from AVD30 to AVD90. The effect of
TSS spatial variability can be minimised by using an aggregate of larger pixel window sizes. However,
using larger window width can also result in higher variability in TSS, especially in waters that vary
rapidly in the spatial domain, a common characteristic of waters associated with dredging operations.
For our study site, on the second field trip, we visually observed that high spatial variation in TSS was
present in a small spatial domain.
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The daily and monthly TSS averages for SG, DA and CA were computed and are shown in 
Figure 8a,b respectively. In MODIS-Aqua daily TSS plots we see that SG and DA TSS are consistently 
higher than CA, which is expected because of the location of CA being further from the coast, further 
from the dredge operation, and in deeper waters thus have less re-suspension of TSS from local tidal 
influences. The monthly average of MODIS-Terra derived TSS in DA is higher than SG from the 
beginning of 2013 until June 2013 and then comparable to SG from July 2013 until the end of 2013. 
After June 2013, the MODIS-Aqua derived TSS in DA is slightly higher than SG for all months except 
July and October. However, the differences in monthly averaged TSS concentration between SG and 
DA after June 2013 are not different than monthly averaged TSS concentration before June 2013 (refer 
to Figure 8a,b for details). The apparent shift in TSS, in MODIS-Aqua data, from SG being lower in 
the early half of 2013 and increasing in the later part of 2013 may be as a result of the increasing load 
of spoil in the SG. Further, the effect of river outflow from the Ashburton River and intermediate 
streams created by heavy rain might be a cause of DA being higher in TSS when compared with SG 
during the early half of 2013. Rainfall data for Onslow Airport shows there was higher rainfall from 
January to June 2013 when compared with July to December [83]. 

Figure 7. Validation between the SASM-derived TSS from MODIS-Aqua band 1 reflectance for
(a) AVD30; (b) AVD60; and (c) AVD90. The error bar indicates the minimum and maximum TSS
computed in 3 ˆ 3 and 5 ˆ 5-pixel window widths.

3.4.3. Temporal Analysis of 2013 MODIS Imagery

The daily and monthly TSS averages for SG, DA and CA were computed and are shown in
Figure 8a,b respectively. In MODIS-Aqua daily TSS plots we see that SG and DA TSS are consistently
higher than CA, which is expected because of the location of CA being further from the coast, further
from the dredge operation, and in deeper waters thus have less re-suspension of TSS from local tidal
influences. The monthly average of MODIS-Terra derived TSS in DA is higher than SG from the
beginning of 2013 until June 2013 and then comparable to SG from July 2013 until the end of 2013.
After June 2013, the MODIS-Aqua derived TSS in DA is slightly higher than SG for all months except
July and October. However, the differences in monthly averaged TSS concentration between SG and
DA after June 2013 are not different than monthly averaged TSS concentration before June 2013 (refer
to Figure 8a,b for details). The apparent shift in TSS, in MODIS-Aqua data, from SG being lower in the
early half of 2013 and increasing in the later part of 2013 may be as a result of the increasing load of
spoil in the SG. Further, the effect of river outflow from the Ashburton River and intermediate streams
created by heavy rain might be a cause of DA being higher in TSS when compared with SG during the
early half of 2013. Rainfall data for Onslow Airport shows there was higher rainfall from January to
June 2013 when compared with July to December [83].
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wind speed greater than 8 m·s−1 tends to take about three days to build to a maximum before settling 
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Figure 8. Daily (a) and monthly averaged (b) TSS derived from the SASM for 2013 MODIS-Aqua data.

Figure 8a shows a number of anomalies in daily TSS when compared with the respective trend,
apparent as “spikes” in the data. Such anomalies were examined with respect to the wind speed of the
study site to study the potential links to re-suspension of sediment in the water column. From the daily
mean average wind speed in 2013 acquired from the Bureau of Meteorology (http://www.bom.gov.au)
for Onslow Airport, we performed a correlation analysis between wind speed on different days and
TSS for all three study regions. In general, for wind speeds less than 7 m¨ s´1 there was no significant
correlation between wind speed and TSS for any of the regions. For speeds greater than 8 m¨ s´1, and
for two and three days before the TSS dates, there was strong correlation observed between TSS and
wind speed at all three regions. The results show that for MODIS-Aqua derived TSS, a lag of three
days gives the highest correlation (r = 0.92) for the DA. The correlation results between wind speed
and TSS indicates that the re-suspension of sediments from wind speed greater than 8 m¨ s´1 tends to
take about three days to build to a maximum before settling down. Specific TSS anomalies in the time
series, such as those observed on days 15 (15 January) and 61 (2 March) in Figure 8a correspond to
the effects of tropical cyclone Narelle which moved as close as 330 km off the coast of Exmouth on
12 January 2013 and severe tropical cyclone Rusty which made landfall on 27 February 2013 in Port
Hedland which is located at 389 km north east of Onslow [84].
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Figure 9 show a series of monthly average TSS images spanning 2013 derived from MODIS-Aqua
using the SASM. January was impacted by tropical cyclone Narelle, which crossed the study site on
11 and 12 January 2013, thus the average TSS levels are relatively high and widespread. The monthly
images show that TSS levels in the SG and DA begin to increase from May and maintain high levels
until October, then tend to decrease during November and December. The increase in TSS in both
the SG and DA from May is likely due to dredging activities being carried out starting in May and
continuing until October 2013. The maximum monthly TSS averages were observed in October in the
SG with a TSS concentration of 2.88 ˘ 0.52 mg/L, in the DA the maximum was 3.73 ˘ 1.21 mg/L in
May, and the CA displayed a maximum of 0.79 ˘ 0.04 mg/L in October amongst the MODIS-Aqua
derived monthly TSS averages. The monthly TSS averages were higher in SG and DA from May to
December than the January to March, despite the higher rainfall in the first six months of 2013 [83].
This is a strong indication of the impact of the dredge process causing higher TSS concentrations.
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4. Conclusions  

In this paper we developed a semi-analytic sediment model (SASM) that is both physically 
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4. Conclusions

In this paper we developed a semi-analytic sediment model (SASM) that is both physically
sensible in its general form and adapted to the northern Western Australian coastal waters in retrieving
TSS from 250 m MODIS-Aqua band 1 reflectance. We assessed the inherent uncertainty due to
combined model and atmospheric correction effects in the retrieved TSS product to be 43.03% to
60.91% for MODIS-Aqua. We demonstrated the application of the SASM TSS concentration product
in analysing MODIS-Aqua data for 2013 and associated this with the dredge activities at Onslow in
Western Australia. The 250 m imagery was successful at highlighting the impact of cyclones and
dredge activities on dredge spoil grounds and dredge operation areas. Further, daily anomalies in
temporal data were able to be linked to specific causes, including dredge activities, cyclone events,
wind-induced re-suspension, and increased river outflow. Thus, we have shown that the SASM, in
conjunction with an appropriate atmospheric correction method for MODIS-Aqua band 1, should be
sufficient for monitoring TSS in Onslow waters or waters with similar optical properties before, during
and after dredging operations. The SASM developed in this study can be applied to other regional
waters of Western Australia or waters with similar optical properties, but the application of the SASM
beyond the regional waters of Western Australia should be carried out with recalibration of the SASM
parameters. The merits of the SASM are the ease in calibration using in situ TSS concentration for
particular regions of interest, akin to fully empirical algorithm, but also the robustness based on a
physical foundation of the radiative transfer theory.
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Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/7/556/s1,
Figure S1: (a) Scatter plot for modelled and HydroLight ω1b (650 nm); (b) ω1b (650 nm) as a function of TSS,
Figure S2: (a) Scatter plot for modelled and HydroLight ω1b (790 nm); (b) ω1b (790 nm) as a function of TSS, Table S1:
Six different water types grouped based on CHL concentration and CDOM, Table S2: Comparative ω1b (494 nm)
results for the NRP and SASM models (all p < 0.005), Table S3: Comparative ω1b (566 nm) results for the NRP
and SASM models (all p < 0.005), Table S4: Comparative ω1b (650 nm) results for the NRP and SASM models (all
p < 0.005), Table S5: Comparative (790 nm) results for the NRP and SASM models (all p < 0.005).
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Appendix A The optical depth for MODIS sensor band 1 simulated using HydroLight.

To ascertain how far below the water’s surface MODIS can “see” in MODIS band 1, we simulated
diffuse attenuation coefficients (Kd) for the near surface waters for different chlorophyll (CHL) and
CDOM for a range of TSS concentrations using HydroLight 4.2 [44]. From the simulated Kd results,
with the assumption that 90% of the diffuse light comes from a water column of depth of 1/Kd [85],
MODIS band 1 can only penetrate 1.9 m at a TSS concentration of 3.9 mg/L for even very low CHL
and CDOM. For high CHL and CDOM concentrations, the penetration depth of MODIS band 1 is only
1.5 m even for zero TSS. Thus, the TSS data collected from a depth of ~1.9 m may be unsuitable for
remotely sensed TSS algorithm development or validation.
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Estimating Total Suspended Sediment Concentration 
in Turbid Coastal Waters of Northern Western 
Australia using MODIS-Aqua 250 m Data 
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1. Comparison of Reflectance Models for Nechad, et al. [1] and SASM 

The ߱௕ᇱ  by definition can be used as a proxy for reflectance because it is a ratio of the amount (ߣ)
of light backscattered to the amount of light absorbed by water and its constituents Nechad, Ruddick 
and Park [1], hereafter referred as NRP. Thus, ߱௕ᇱ  from both the NRP and SASM model is used (ߣ)
here for the comparative analysis using HydroLight-simulated data for different water types. From 
the HydroLight simulations, we generate rrs for given IOP models representing different water types 
[2] to be inverted to compute ߱௕ᇱ  for use in model comparisons between NRP and SASM derived (ߣ)
estimates of߱௕ᇱ (ߣ) . Each model derived ߱௕ᇱ (ߣ)  is then validated using the true ߱௕ᇱ (ߣ)  given by 
Equation (8). The true ߱௕ᇱ  are calculated from the a(λ) and bb(λ) we used as the inputs in the (ߣ)
HydroLight simulation. 

1.1. NRP Reflectance Model 

The reflectance model used in the formulation of rrs (λ) by NRP assumes rrs (λ) is based on the 
first order approximation of Gordon, et al. (1988) [3]: 
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where f ’is a varying dimensionless factor described by Morel and Gentili (1991) [57] and Q is the ratio 
of subsurface upwelling irradiance to the subsurface upwelling radiance. The ratio of the total 
backscattering coefficient to total absorption coefficient (߱௕ᇱ (ߣ) ) is related to subsurface remote 
sensing reflectance as follows: 
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(refer to [1] for details)  

1.2. SASM Reflectance Model 

SASM computes rrs based on the second order approximation of Gordon, et al. [3] as shown in 
Equation (1) using coefficients g1 and g2 from Lee, et al. [4] optimized for turbid waters. In the SASM, 
rrs (λ) is related to ߱௕ᇱ (λ)	as follow:  
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)()('

λ
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x

x
b −

=  (S3) 

where x is given by Equation (15).  

2. HydroLight Simulation 

HydroLight 4.2 by Mobley was used to simulate case-2 water remote sensing reflectance for 
infinitely deep water using a four components model. The four components were: (1) pure water; (2) 
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pigmented particles or chlorophyll (CHL); (3) coloured dissolved organic matter (CDOM) and (4) 
mineral particles (TSS).  

For all HydroLight simulations, the following details were kept unchanged: the phase function 
for component 1 was a Rayleigh-like phase function, components 2 and 4 used Petzold “average 
particle” phase functions, and component 3 used an isotropic phase function. Standard (IOP) models 
from HydroLight were used to compute components’ scattering and absorption coefficients: the 
component 1 absorption coefficient was from and the scattering coefficients were from [5]. The 
component 2 absorption coefficient for a chlorophyll-specific absorption was derived from and the 
scattering coefficient was computed using the [6] near surface power law model. The specific 
absorption for component 3 was computed using an exponential decay model and the component 4 
specific absorption and scattering coefficients were from HydroLight data for Calcareous sand.  

HydroLight simulations were performed fora solar zenith angle of 30°, wind speed of 5 m·s−1, 
and for a clear sky using Harrison and Coombes’ sky model for different TSS concentration, CHL 
concentration, and CDOM absorption. TSS concentration values ranged from 0–200 mg/L. For the 
range 0–50 mg/L the TSS concentration was increased at the rate of 0.2 mg/L and for the 50–200 mg/L 
range the rate of increment was 2.0 mg/L. The concentration of chlorophyll was set at 0.1 mg·m−3,  
1 mg·m−3, 5 mg·m−3 and 10 mg·m-3 and CDOM absorption of 0.1 m−1 and 1.0 m−1 were used in the 
simulation. The combinations of CHL and CDOM were used to define 6 different water types, shown 
in Table S1.  

Table S1. Six different water types grouped based on CHL concentration and CDOM absorption. 

CHL (mg·m−3) and CDOM (m−1) Water Type
CHL 0.1 and CDOM 0.1 I 
CHL 1.0 and CDOM 0.1 II 
CHL 5.0 and CDOM 0.1 III 
CHL 10.0 and CDOM 0.1 IV 
CHL 0.1 and CDOM 1.0 V 
CHL 10.0 and CDOM 1.0 VI 

3. Reflectance Model Evaluation 

We present ߱௕ᇱ  modelled using Equations (22) and (23) for the 6 different water types as a (ߣ)
function of TSS concentration, compared with HydroLight simulated ߱௕ᇱ  The details of the results .(ߣ)
from model evaluation are presented in Tables S2–S4, and Table S5 for blue (494 nm), green (566 nm), 
red (650 nm), and NIR (790 nm) wavelength respectively. For all bands and different water types, ߱௕ᇱ  was approximated better by the reflectance model in the SASM when compared with that in (ߣ)
the NRP model. In comparison, the highest MARE was given by the NRP model for the green band 
(~75%) for water type I whereas the highest MARE of the SASM was ~4.5% in the blue band for water 
type V. 

Since both the NRP and SASM are based on the assumption that red and NIR wavelengths are 
optimal for the estimation of TSS, we make a detailed comparative analysis between NRP and SASM 
in the red and NIR spectral regions. In the red spectral region, we find that the NRP model better 
estimates ߱௕ᇱ  when CHL and CDOM are increased: MARE improved by 6.0% from type I to type (ߣ)
VI, while for the SASM the MARE performance decreases by 0.48% from water type I to type VI. 
Likewise, in the NIR band, the shift in improvement over different water types is ~1.0% for the NRP 
model and ~0.17% for the SASM. However, comparing the red and NIR bands, the NRP model 
performs better for the NIR band with the MARE ~15.0% lower than the red band. For the SASM, the 
performance is better in the red band by ~1.0%. Illustration of the differences between the NRP model 
and the SASM for their performance in estimating ߱௕ᇱ (ߣ)  with respect to Hydrolight-modelled ߱௕ᇱ  is shown in Figures S1a and S2a for red and NIR bands respectively for water type VI. For the (ߣ)
variation of ߱௕ᇱ  as a function of TSS, Figure S1b for the red band and Figure S2b for the NIR band (ߣ)
shows that the accuracy of the estimation of ߱௕ᇱ  decreases with increasing TSS concentration for (ߣ)
the NRP model. The estimation of ߱௕ᇱ  by the NRP model deviates by more than 25% for TSS (ߣ)
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concentrations greater than 100 mg/L. The ߱௕ᇱ  are estimated better by the SASM for the whole (ߣ)
range of TSS when compared with the NRP for all spectral bands with maximum deviation of only 
4.53% in the blue band. 

Table S2. Comparative ߱௕ᇱ (494	nm)	results for the NRP and SASM models (all p < 0.005). 

Water Type 
NRP SASM  

RMSE (sr−1) MARE (%) r RMSE (sr−1) MARE (%) r 
I 0.53 57.41 0.99 0.01 1.00 1.00 
II 0.49 53.70 0.99 0.01 1.15 1.00 
III 0.37 41.86 0.99 0.01 2.15 1.00 
IV 0.28 32.91 0.99 0.02 2.98 1.00 
V 0.23 26.00 0.99 0.02 4.53 1.00 
VI 0.17 20.55 0.99 0.02 4.13 1.00 

Table S3. Comparative ߱௕ᇱ (566	nm)	results for the NRP and SASM models (all p < 0.005). 

Water Type 
NRP SASM  

RMSE (sr−1) MARE (%) r RMSE (sr−1) MARE (%) r 
I 0.83 74.71 0.98 0.02 2.08 1.00 
II 0.81 73.31 0.98 0.02 2.05 1.00 
III 0.73 66.86 0.98 0.02 1.92 1.00 
IV 0.64 59.85 0.99 0.02 1.88 1.00 
V 0.52 49.24 0.98 0.02 2.25 1.00 
VI 0.45 43.06 0.98 0.02 2.66 1.00 

Table S4. Comparative ߱௕ᇱ (650	nm)	results for the NRP and SASM models (all p < 0.005). 

Water Type 
NRP SASM  

RMSE (sr−1) MARE (%) r RMSE (sr−1) MARE (%) r 
I 0.36 35.91 0.98 0.02 3.07 1.00 
II 0.35 35.26 0.98 0.02 3.11 1.00 
III 0.32 32.64 0.99 0.02 3.24 1.00 
IV 0.29 29.62 0.99 0.02 3.44 1.00 
V 0.33 33.09 0.98 0.02 3.27 1.00 
VI 0.27 27.76 0.99 0.02 3.55 1.00 

Table S5. Comparative ߱௕ᇱ (790	nm)	results for the NRP and SASM models (all p < 0.005). 

Water Type 
NRP SASM  

RMSE (sr−1) MARE (%) r RMSE (sr−1) MARE (%) r 
I 0.04 21.70 0.99 0.01 4.00 1.00 
II 0.04 21.57 0.99 0.01 4.00 1.00 
III 0.04 20.84 0.99 0.01 3.92 1.00 
IV 0.04 20.13 0.99 0.01 3.83 1.00 
V 0.04 21.87 0.99 0.01 4.00 1.00 
VI 0.04 20.15 0.99 0.01 3.83 1.00 
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(a) (b) 

Figure S1. (a) Scatter plot for modelled and HydroLight ߱௕ᇱ (650	nm); (b) ߱௕ᇱ (650	nm) as a function 
of TSS. 

  
(a) (b) 

Figure S2. (a) Scatter plot for modelled and HydroLight ߱௕ᇱ (790	nm); (b) ߱௕ᇱ (790	nm) as a function 
of TSS. 
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Abstract: A quantitative comparative study was performed to assess the relative applicability of
Total Suspended Solids (TSS) models published in the last decade for the Moderate Resolution
Imaging Spectroradiometer (MODIS) and Landsat-based sensors. The quantitative comparison was
performed using a suite of statistical tests and HydroLight simulated data for waters ranging from
clear open ocean case-1 to turbid coastal case-2 waters. The quantitative comparison shows that
there are clearly some high performing TSS models that can potentially be applied in mapping TSS
concentration for regions of uncertain water type. The highest performing TSS models tested were
robust enough to retrieve TSS from different water types with Mean Absolute Relative Errors (MARE)
of 69.96%–481.82% for HydroLight simulated data. The models were also compared in regional
waters of northern Western Australia where the highest performing TSS models yielded a MARE in
the range of 43.11%–102.59%. The range of Smallest Relative Error (SRE) and Largest Relative Error
(LRE) between the highest and the lowest performing TSS models spanned three orders of magnitude,
suggesting users must be cautious in selecting appropriate models for unknown water types.

Keywords: total suspended solids; MODIS; Landsat; coastal water; ocean; remote sensing

1. Introduction

The health of coastal waters not only determines the health of marine habitats in the region but
also signifies the health of the nearby human inhabitants with nearly 60% of the earth’s population
settled in the coastal zones of our oceans and seas, and over 90% of the world’s fish caught for
consumption being sourced from coastal waters [1]. The health of water systems is typically
determined from a key indicator, the water clarity (turbidity) which is influenced by the amount
of dissolved matter and total suspended solids (TSS) comprising organic matter such as algae and
other micro-organisms and inorganic particulate matter from minerals [2]. Monitoring TSS along
with other water quality parameters is crucial for coastal ecology because TSS can directly affect the
turbidity and color of water [3] and turbidity determines the amount of light availability at depth for
primary production [4–6].

Monitoring the temporal and spatial distribution of TSS in the coastal environment can be a
huge undertaking and nearly impossible in terms of financial and time resources if performed using
traditional in situ water sampling methods [7] unless coupled with satellite-based remote sensing. Since
the early space-borne sensors of the 1970s there has been, and continues to be, a great improvement in
the spectral, spatial and temporal resolutions [8]. For example, the Landsat-based series of sensors has
evolved over the years from three (red, green and blue) spectral bands with spatial resolutions of 185 m
and a revisit time of 18 days to the newest Landsat-8 with 11 spectral bands (433–12,500 nm) with
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spatial resolutions of 30 m (and 15 m panchromatic) and a revisit time of 16 days. The shortcoming of
the long revisit time for Landsat can be filled by the readily available MODIS-Aqua and Terra sensors
which have shorter revisit times of one day, and with 36 spectral bands (405–14,385 nm) and spatial
resolutions from 250 m to 1000 m.

Since the launch of the early remote sensing satellites in the early 1970s many studies have been
conducted in remotely mapping TSS, driven in part by the capability of satellite remote sensing to
cover large spatial domains in near real time [7]. Considering the past decade, remote sensing
studies of the spatial and temporal mapping of TSS have utilized moderate resolution sensors
including Landsat [9–15], MERIS [6,16–20], MODIS [17,21–27], and high resolution sensors including
SPOT [28], IKONOS [29], and THEOS [30]. Further, the TSS mapping studies encompassed waters with
diverse optical and physical properties, from inland lakes and river systems [21,25,31–33] to coastal
waters [34–38] and from different geographical locations including America [3,32,39], Africa [26,40],
Asia [16,34,41], Australia [42,43], and Europe [17,23,27,37].

The majority of the models developed in retrieving TSS by remote sensing methods are typically
locally tuned to a regional water or waters with similar optical properties. Regional tuning of a
TSS model is necessary because of the potentially large variation in the inherent optical properties
(IOPs) of the water constituents. The theoretical basis of ocean color remote sensing has shown that
sensor-measured reflectance of the water is related to the IOPs of the water—absorption and scattering
coefficients. IOPs vary with the types and amounts of the water’s constituents, such as sediments,
phytoplankton, detrital matter and CDOM [44] which may be different for different sediment types and
phytoplankton types in different regions. In addition, factors such as water depth, viewing geometry,
and atmospheric conditions all add to the complexity of the relationship between the measurement of
reflectance of the water surface and the IOPs and concentrations of constituents [45].

TSS models are generally classified into three categories, (1) an empirical model where TSS is
modelled directly using a statistical analysis to relate the apparent optical properties (AOPs); (2) an
analytic model that relates the IOPs and AOPs of water through radiative transfer theory to derive
TSS; and (3) a semi-analytic model that is partly based on the empirical analysis and grounded
on the radiative transfer theory [7]. Individual TSS model designs have their own limitations and
advantages. An empirical model is often sought for its simplicity and explanatory power because
unique properties of local waters are tuned to each model, but it may lack general applicability.
An analytic model is potentially applicable to other water bodies because it is not dependent on the in
situ water constituents, but it requires accurate knowledge of water column properties which is often
difficult to acquire. The semi-analytic model has both the limitations and advantages associated with
the first two models, and it is generally preferred because it has higher explanatory power and is more
convenient than the analytic model [7,8].

In the last decade, various TSS models have been developed [35,37,38,46,47] and applied to their
respective regions with a wide range of success with reported retrieval errors ranging from lows of
~18% to highs of ~61%. Considering each model is developed and tuned for a specific region, water
type and its associated IOPs, the application or transferability of the models to other regions is limited,
and the likely accuracy of the results unknown. Even when an existing TSS model is applied to waters
in similar regions it is often first re-calibrated before being applied. The availability of many TSS
algorithms for different regions and sensors warrants one to ask if we can use someone else’s algorithm
to estimate TSS in regions where we do not have any in situ observations? For the cross applicability of
TSS models between different regions the design of a TSS algorithm has to either be based on analytic
methods and grounded on theoretical functions of radiative transfer theory, or the waters must be
assumed to have similar optical and physical properties. However, considering the vast number of
TSS models that have been developed across different geographical regions with different optical and
physical properties we can seek to establish the robustness in the applicability of these existing TSS
algorithms for different regions.
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A recent study by Brewin, et al. [44] developed an objective methodology where comparison
of different bio-optical algorithms are quantitatively and qualitatively considered for use in climate
studies. Following the methods of Brewin, et al. [44] and their quantitative methodology to rank the
algorithms, in this study we objectively compare the performance of TSS algorithms for MODIS and
Landsat sensors developed during the last decade using HydroLight simulated data for different water
and sediment types. If shown to be robust, these algorithms would provide marine remote sensing
scientists and coastal managers some level of confidence in their ability to assess the quality of water
with minimal resource for coastal monitoring of optically unexplored waters. Specifically, this study
aims to quantitatively assess the applicability of established TSS algorithms to different water types
and quantify the variability in retrieving TSS when using off the shelf TSS algorithms for MODIS and
Landsat sensors.

2. Materials and Methods

2.1. Dataset

2.1.1. HydroLight Simulation

A set of ocean reflectance spectra were derived using the radiative transfer numerical model
HydroLight 4.2 (Sequoia Scientific, Inc., Bellevue, WA 98005, United States of America) in the four
component case-2 waters mode. Using a forward model HydroLight solves radiance distributions and
derives reflectance and radiance for water bodies with specific inherent optical properties (SIOPs) for
given sky and water state conditions [48]. Sub-surface remote sensing reflectance’s (rrs) were computed
for infinitely deep water using a range of SIOPs, sea-state, and sky conditions. The spectral range for
rrs from HydroLight was simulated for wavelengths (λ) in the range of 400 nm–800 nm at a nominal
bandwidth of 4 nm.

For all the HydroLight simulations the sea state was chosen to have a wind speed of 5 m·s−1 and
the sky radiance computed using the Harrison and Coombes (1988) normalized radiance model for
a clear sky. The diffuse and direct sky irradiances were computed using the Gregg and Carder
(1990) irradiance model for a solar zenith angle of 30◦ [49]. The four components, pure water,
chlorophyll (CHL), colored dissolved organic matter (CDOM), and mineral (TSS) were modelled
in varying concentrations, presented in Table 1, to be representative of open ocean to turbid coastal
waters. For the TSS component, five different sediment types were used, namely (1) brown earth;
(2) calcareous sand; (3) yellow clay; (4) red clay; and (5) Bukata from the default database of HydroLight.
The phase functions for the components were modelled as Rayleigh like phase function for pure water,
Fournier-Forand phase function with bb(λ)/b(λ) of 0.01 for CHL, and Petzold “average particle” phase
function for TSS for all the aforementioned HydroLight simulations. In addition to the aforementioned
parameters for HydroLight simulations, we further carried out additional simulations using the
parameters outlined above but with solar zenith angles of 15◦, 30◦, 45◦, and 60◦ and bb(λ)/b(λ) ratios
of 0.001, 0.01, 0.018, 0.05, and 0.1 for calcareous sand to study the robustness of TSS models to changes
in solar angles and the backscattering ratios.

The IOP models used in this HydroLight simulation are described by Equations (1) and (2).
The total absorption coefficient (a(λ)) is the sum of absorption coefficients of pure water (aw(λ)),
CHL (aϕ(λ)), CDOM (acdom(λ)) and TSS (ap(λ)):

a(λ) = aw(λ) + aϕ(λ) + acdom(λ) + ap(λ) (1)

The total scattering coefficient (b) is the sum of scattering coefficients of pure water (bw(λ)),
CHL (bϕ(λ)), and TSS (bp(λ)):

b(λ) = bw(λ) + bϕ(λ) + bp(λ) (2)
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The total backscattering coefficient is expressed as the sum of backscattering coefficients for pure
sea water (bbw(λ)), particulates (bbp(λ)), and phytoplankton pigments (bbϕ(λ)).

bb(λ) = bbw(λ) + bbp(λ) + bbϕ(λ) (3)

The SIOP models allow the scaling of the IOP of each component with concentration (X):

ai(λ) = ai
∗(λ)× Xi (4)

bi(λ) = bi
∗(λ)× Xi (5)

where i is the component and ai*(λ) and bi*(λ) are component specific absorption and
scattering coefficients.

Table 1. Concentration of colored dissolved organic matter (CDOM), chlorophyll (CHL), and total
suspended solids (TSS) used in HydroLight modelling. The pure water component in all the
HydroLight runs remains unchanged.

CHL (mg/m3) CDOM (m−1) TSS (mg/L)

0.01, 3.0, 20.0 0.001, 1.0, 10.0

0.01–1.00 at 0.01 interval
1.00–10.00 at 0.1 interval
10.00–50.00 at 1.0 interval

50.00–100.00 at 2.0 interval
100.00–250.00 at 5.0 interval

250.00–500.00 at 10.0 interval
500.00–2000.00 at 50.0 interval

2000.00–7000.00 at 250.0 interval

The SIOP of each component was either obtained from HydroLight’s default dataset or modeled
using established models. For the specific absorption and scattering coefficients: the absorption
coefficient for pure water was obtained from Pope and Fry (1997) [50] and mass-scattering coefficient
from Smith and Baker (1981) [51], the CHL mass-specific absorption coefficient (aϕ*(λ)) from
Prieur-Sathyendranath (1981) [52] and the CHL mass-specific scattering coefficient modeled using
Equation (6), the CDOM mass-specific absorption was modeled using Equation (7) and CDOM
was considered to be a non-scattering component, and the mineral mass-specific absorption and
scattering coefficients were obtained from HydroLight’s default dataset for brown earth, calcareous
sand, yellow clay, red clay, and Bukata. Figure 1a,b shows the mass-specific absorption and scattering
coefficients of the five different minerals used in the HydroLight modelling of water reflectance.
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Figure 1. Mineral mass-specific absorption (a) and scattering coefficients (b).
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bϕ∗(λ) = 0.407CHL0.795
(

600
λ

)
(6)

acdom
∗(λ) = 0.1exp(−0.014× (λ− 440)) (7)

2.1.2. Extrapolation of Simulated Dataset

The IOP data output by HydroLight do not extend beyond 800 nm, however some of the TSS
algorithms for MODIS and Landsat utilize bands beyond the 800 nm reflectance data generated by
the HydroLight simulations. To include algorithms which utilize bands in the NIR region of the
electromagnetic spectrum, we extrapolated the rrs(λ) data from HydroLight to 1300 nm using Equation
(1) of the quasi-analytical model of Lee, et al. [53] at a nominal wavelength of 1.0 nm:

rrs(λ) = g0

(
bb(λ)

a(λ) + bb(λ)

)
+ g1

(
bb(λ)

a(λ) + bb(λ)

)2

(8)

where g0 and g1 are assigned either g0 = 0.0949 and g1 = 0.0794 for oceanic case-1 water [54], g0 = 0.084
and g1 = 0.17 for coastal water, or averaged values of g0 = 0.0895 and g1 = 0.1247 for coastal and case-1
waters [53]. The selection of values for g0 and g1 were based on the condition that the selected values
provided the minimum Mean Absolute Relative Error (MARE) as defined in Equation (C1) in the
Appendix C between HydroLight and Equation (8) rrs (λ) spectra.

To model the rrs (λ) spectra to 1300 nm using Equation (8), we used the following IOPs—the
total absorption coefficient was computed using Equation (1) while the total backscattering
coefficient was computed using Equation (2). Equations (4) and (5) were used to compute
individual component-specific absorption and scattering coefficients using the respective component
concentration and the phase function used in the HydroLight simulations as mentioned in Section 2.1.1.
The total backscattering coefficient in Equation (8) was computed from the respective backscattering
components in Equation (3) which in turn were computed using respective scattering components
from Equation (2) and scattering phase functions and backscattering ratios discussed in Section 2.1.1.
The mineral specific absorption and backscattering coefficients were spline extrapolated to 1300 nm to
compute the mineral-specific absorption and backscattering coefficients required in Equations (4) and
(5). The rrs (λ) spectra generated using HydroLight and modelled using Equation (8) had MARE of
1.6% to 13.73%. The higher relative error was toward the blue end of the spectral region.

2.1.3. Grouping of Datasets

Using the extrapolation methods discussed in Section 2.1.2, in total 2.2 × 104 rrs(λ) spectra were
generated for the spectral range of 350 nm to 1300 nm at the nominal wavelength of 1.0 nm for the
parameters discussed in Section 2.1.1. The water, from the point of view of remote sensing, can be
classified into case-1 and case-2 water types: case-1 waters are optically dominated by phytoplankton
(CHL) while case-2 waters are more optically complex with varying concentrations of CHL, CDOM
and TSS that are region specific [28,45]. With respect to modelling the water types, it is not feasible
to model each water type that is optically similar to the optical properties of the water where each
individual TSS model was developed. The TSS models that are robust enough in one region can often
fail when applied to other regions because each TSS model is typically tuned to a specific region where
the waters are optically unique. Thus, due to the problem of accurately modelling the waters to suit
any specific TSS model, and acknowledging the fact that we cannot simulate all the conditions and
compositions of ocean constituents for different regions, we resorted to five different classes (shown
in Table 2) to represent varying cases of water where concentrations of one ocean constituent might
dominate the others or there are different degrees of contributions from each constituent. CLASS I
from the water classification in Table 2 represents high CHL and low CDOM concentration which
in a physical world would be associated with high phytoplankton blooms in eutrophic lakes where
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concentration of CHL dominates other optically active substances [55]. CLASS II with high CDOM
and low CHL represents water where CDOM dominates other optically active substances, which is
the case in lakes where CHL is generally low, for example as in the case in lakes in boreal regions and
waters off the coast in the Baltic Sea [55]. CLASS III and IV represent the extreme cases where both
CDOM and CHL are either high or low, which can be associated with high phytoplankton blooms in
coastal waters for CLASS III and open ocean water with low CHL for CLASS IV. CLASS V represents
a general case of coastal waters where CHL and CDOM are moderate. For all the classes of water
discussed above, the TSS is varied in its concentration independent of different water cases considered.

Table 2. Five different water classes.

CLASS CDOM (m−1) CHL (mg/m3)

I 0.01 20.0
II 10.0 0.1
III 10.0 20.0
IV 0.01 0.1
V 1.0 5.0

2.1.4. HydroLight-Derived Reflectance to Sensor Equivalent Reflectance

The TSS retrieval algorithms developed by various researchers use different types of reflectance
measurements to relate to TSS concentrations. The most common choice among all the TSS algorithms
considered here is the remote sensing reflectance (Rrs(λ)), which is defined by Equation (9).

Rrs(λ) =
Lw(0+, λ)

Ed(0+, λ)
(9)

where Lw (0+, λ) is the water leaving radiance and Ed (0+, λ) is the downwelling irradiance evaluated
above the water surface. The HydroLight generated rrs(λ) was converted to Rrs(λ) following [53] as
defined by Equation (10).

Rrs(λ) =
0.52rrs(λ)

1− 1.7rrs(λ)
(10)

After converting rrs(λ) to Rrs(λ), depending on the sensor and the bands used by particular TSS
algorithms, we convolved Rrs(λ) from Equation (10) to each sensor’s respective band reflectance using
the spectral response function of the sensor in their respective bands using Equation (11).

Rk
rs =

∫
∆k

Rrs(λ) s(λ)dλ∫
∆k

s(λ) dλ
(11)

where Rk
rs is the band averaged Rrs for each band, k, with band width ∆k and spectral response

function s(λ) of the sensor.
The next common reflectance type used in TSS algorithms is a normalized water-leaving

reflectance which is related to Rrs(λ) as follows:

ρw(λ)|N = πRrs(λ) (12)

There are also algorithms which employ normalized water leaving radiance which is calculated
using Equation (13).

Lw(λ)|N =
ρw(λ)× Fo(λ)

π
(13)

where Fo(λ) is the extraterrestrial solar irradiance band averaged to each sensor’s band using their
respective band spectral response functions.
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2.2. TSS Models

This section lists the available TSS algorithms from 2000–2015 that are empirical and semi-analytic
in their design for MODIS and Landsat-based sensors. We made an effort to select all the
available TSS algorithms for the sensors considered in this study using a search database ‘Scopus’
(https://www.scopus.com/), but we acknowledge that some of the literature for TSS algorithms,
which were not present in the database, might have been missed. However, within the limitation of our
search capability we made an effort to use other science databases and discovered 42 MODIS empirical
models and 7 semi-analytical models, 22 Landsat empirical models and 5 semi-analytical models.
The summaries of each TSS algorithm are provided in Table A1. Semi-analytical models described in
this section encompass all the semi-analytical models from MODIS (MOD-A) and Landsat (LAN-A).
Models are considered semi-analytic because they are derived based on a physical form [56] or one or
more parameters in the TSS algorithms are either parameterized using site-specific or global in-water
bio-optical properties [38]. Semi-analytic algorithms for the two sensors considered here consist of
algorithms that are based on radiative transfer modelling to relate the dependence of geo-physical
properties of the water, TSS in our case, to the reflectance via IOPs of the water.

Empirical models consist of TSS algorithms that are directly related with in situ AOPs of water
and the TSS using linear or non-linear regression methods. For the two optical sensors considered here
the empirical algorithms from MODIS (MOD-E) and Landsat (LAN-E) will be collectively known as
empirical algorithms unless otherwise stated explicitly. The form of the equations used in the empirical
methods ranged from simple linear [17,26,57,58], exponential [9,21,34,59], power [10,46,60] and other
polynomial relationships [61–63] using single, multiple or combinations of different bands in band
ratio or self-formulated indexes. To differentiate the algorithms within each sensor, algorithms will be
labeled with a respective number following each sensor’s name, MOD-A1 and MOD-E1 will represent
MODIS semi-analytic algorithm 1 and MODIS empirical algorithm 1 respectively; likewise, a similar
naming convention is followed for TSS algorithms for Landsat-based sensors.

2.3. Statistical Tests and Scoring System

The statistical tests used to evaluate the performance of each TSS algorithm for different types of
water described in Section 2.1.2 are based on the statistical tests used by Brewin et al. [44]. Further, to
objectively rank the TSS algorithms we used the point scoring system of Brewin et al. [44]. The details
of each statistical test and scoring system of each test adopted from [44] are described in the following
sections. Further, to contain the effect of spurious TSS generated by some of the TSS models being
applied outside their range, we only included TSS estimations that were between a lower bound
available in each TSS model (zero for the TSS models which did not contain the lower bound) and an
upper bound of twice the highest TSS concentration reportedly used to calibrate each TSS model.

2.3.1. Pearson Correlation Coefficient (r) Test

The point scoring system for the r test involves determining if the r-value for each TSS algorithm
is statistically significant when compared with the mean r-value for all TSS algorithms. The statistical
significance is determined through z-scores and the z-score is computed through Fisher’s r-to-z
transformation using relationships between the r-values of two models and the total number of
samples used to determine the r-values, described in [44] as:

z1 = 0.5log
(

1 + r1

1− r1

)
(14)

z2 = 0.5log
(

1 + r2

1− r2

)
(15)

https://www.scopus.com/
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zscore =
z1 − z2√
1

n1−3 + 1
n2−3

(16)

where r1 is the r-value of a specific TSS algorithm and r2 is the mean of all r-values from all the
TSS algorithms. Similarly, n1 is the number of samples in a specific TSS algorithm and n2 is the
mean number of samples from all TSS algorithms. In the event that the TSS model fails to produce a
reasonable estimate of TSS within the accepted bounds of each TSS model when tested for a particular
water type then in such cases the value of n1 can be different between two different water conditions,
similarly, the value of n2 also changes as it is the average number of samples of all TSS models in that
particular water type.

For algorithm comparison, a two-tailed test was performed using the z-score to determine the
p-value. If the p-value was less than 0.05 then the r-values were considered as statistically significant
and for each TSS algorithm that were statistically significant the following scores were assigned
comparing the r-value and the mean r-value (r) of all TSS algorithms:

r− test


0 points i f r < r
1 point i f r = r
2 points i f r > r

(17)

2.3.2. Root Mean Square Error (ψ) Test

The Root Mean Square Error (ψ) of a model estimate, yi, with respect to a true value, xi, can be
computed using Equation (18):

ψ =

√√√√ 1
N

N

∑
i=1

(yi − xi)
2 (18)

The 95% confidence intervals were also calculated for each TSS algorithm and the mean of all
TSS algorithms. For each TSS algorithm, the following scoring points were assigned according to the
conditions in Equation (19):

ψ− test


0 points
1 point
2 points

i f
i f
i f

ψ− ψ95%CI > ψ + ψ95%CI
ψ− ψ95%CI ≤ ψ− ψ95%CI ≤ ψ + ψ95%CI or ψ− ψ95%CI ≤ ψ + ψ95%CI ≤ ψ + ψ95%CI

ψ + ψ95%CI < ψ− ψ95%CI

(19)

where ψ95%CI and ψ95%CI is the 95% confidence interval of ψ and mean—ψ (ψ) of all TSS
algorithms respectively.

Figure 2 shows an example of scoring point classification for Landsat algorithms used in retrieving
TSS concentration for the ψ—test.
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2.3.3. The Bias (δ) Test

The bias (δ) of model estimate yi and true xi is calculated using Equation (20):

δ =
1
N

N

∑
i=1

(yi − xi) (20)

For each TSS algorithm, following score points were awarded according to the conditions in
Equation (21):

δ− test


0 points
1 point
2 points

i f
i f
i f

δ95%CI > δ95%CI AND δ− δ95%CI > 0 + δ95%CI or δ + δ95%CI > 0− δ95%CI
δ95%CI < δ95%CI or 0− δ95%CI ≤ δ + δ95%CI ≤ 0 + δ95%CI or 0− δ95%CI ≤ δ− δ95%CI ≤ 0 + δ95%CI

δ95%CI < δ95%CI AND 0− δ95%CI ≤ δ− δ95%CI ≤ 0 + δ95%CI or 0− δ95%CI ≤ δ + δ95%CI ≤ 0 + δ95%CI

(21)

where δ95%CI and δ95%CI is the 95% confidence interval of mean—δ (δ) of all TSS algorithms respectively.
Further, to score one point only one conditions must be satisfied while to score two points both the
conditions must be satisfied.

2.3.4. The Center-Pattern Root Mean Square Error (∆) Test

The center-pattern Root Mean Square Error (∆) is calculated using Equation (21):

∆ =

√√√√ 1
N

N

∑
i=1
{(yi − y)− (xi − x)}

2

(22)

The 95% confidence intervals were also calculated for each TSS algorithm and the mean of all TSS
algorithms. For each TSS algorithm, the following scores were assigned according to the conditions in
Equation (23):
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∆− test


0 points
1 point
2 points

i f
i f
i f

∆− ∆95%CI > ∆ + ∆95%CI
∆− ∆95%CI ≤ ∆− ∆95%CI ≤ ∆ + ∆95%CI or ∆− ∆95%CI ≤ ∆ + ∆95%CI ≤ ∆ + ∆95%CI

∆ + ∆95%CI < ∆− ∆95%CI

(23)

where ∆95%CI and ∆95%CI is the 95% confidence interval of ∆ and mean—∆ (∆) of all TSS
algorithm respectively.

2.3.5. The Slope (S) and Intercept (I) of a Type-2 regression Test

The Slope (S) and Intercept (I) of a type-2 regression [64] were calculated using Equation (24):

Y = X× S + I (24)

where Y is the TSS estimates derived from the TSS algorithms and X the true TSS. The following
scores were assigned by comparing the S—value of each TSS algorithm and mean—S (s) value of all
TSS algorithms.

S− test


0 points
1 point
2 points

i f
i f
i f

σs > σs AND S− σs > 1 + 2σs or S + σs < 1− 2σs
σs < σs or 1− 2σs ≤ S− σs ≤ 1 + 2σs or 1− 2σs ≤ S + σs ≤ 1 + 2σs

σs < σs AND 1− 2σs ≤ S− σs ≤ 1 + 2σs or 1− 2σs ≤ S + σs ≤ 1 + 2σs

(25)

where σs is the standard deviation of s from all TSS algorithms.
For the I parameter, for each TSS algorithm, the following scores were assigned according to the

conditions in Equation (26).

I − test


0 points
1 point
2 points

i f
i f
i f

σI > σI AND I − σI > 0 + 2σI or I + σI < 0− 2σI
σI < σI or 0− 2σI ≤ I − σI ≤ 0 + 2σI or 0− 2σI ≤ I + σI ≤ 0 + 2σI

σI < σI AND 0− 2σI ≤ I − σI ≤ 0 + 2σI or 0− 2σI ≤ I + σI ≤ 0 + 2σI

(26)

where σI is the standard deviation of mean—I (I) from all TSS algorithms. Further, in the S and I—test
in Equations (25) and (26), to score one point only one of the two conditions must be satisfied while to
score two points both the conditions must be satisfied.

2.3.6. Percentage of Possible Retrievals (η)

The percentage of possible retrievals (η) was calculated using Equation (27):

η =
NE

NM × 100% (27)

where NE is the total number of TSS retrieved using each TSS algorithm from the total number of
TSS concentrations (NM) considered in the study. For the point scoring system the following basis
was followed:

η − test


0 points
1 point
2 points

i f
i f
i f

η < η − ση

η − ση ≤ η ≤ η + ση

η > η + ση

(28)

where η and ση is the mean η-value and its standard deviation for all TSS algorithm in η-test.

2.3.7. Total Points

For objective comparison the performance of each TSS algorithm with respect to different water
types, all points from each statistical test were added and normalized by the mean score of all TSS
algorithms. Thus, a score of zero indicates that the TSS algorithm is performing lower than the mean
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of all TSS algorithms, a score of one indicates that the TSS algorithm is at par with the average of all
TSS algorithms, and a score of 2 means the TSS algorithm is better than the mean of all TSS algorithms.

Further, to test the stability of the scoring systems used in this study, we used a bootstrap
method [65], with 1000 runs and each time generating a new dataset by resampling via the replacement
method for model generated TSS and HydroLight TSS. Each new dataset was tested using the statistical
tests and scored using the scoring system described in Section 2.3. The results reported in the Section 3
are the mean values of the total points from the bootstrapping method with 2.5 and 97.5 percentiles
reported as uncertainty estimates for 95% confidence limits.

2.3.8. Mean of Total Points

The mean of total points is achieved by averaging the score of each TSS model across different
sediment types or solar zenith angles or backscattering ratios for the particular water classes described
in Section 2.3.7. For example, in the case of different sediment types in CLASS-I water, the mean of
total points in CLASS-I is an aggregate of total scores of each TSS model for different sediment types.
For the case of different backscattering ratios and solar zenith angle, the mean of total points is an
aggregate of each TSS model for different backscattering ratios and solar zenith angles, respectively,
for a specific sediment type in a particular water class. The error bars in the mean of total points are
the mean of uncertainty estimates of the total points obtained from the 95% confidence limit from the
bootstrapping method.

2.3.9. Final Score

The final score is the aggregate of the mean of total points across all water classes for different
sediment types, backscattering ratios and solar zenith angles. For example, the final score for
MOD-E1 is derived as the mean from the aggregate score of MOD-E1 at five different sediment
types, backscattering ratios, and solar zenith angles across all five different water classes. The error
bars are the standard deviation of errors from the mean of total points across all five different water
classes. Figure 3 shows an illustration of the point score system adapted from [44] and used in
comparing TSS models in this study. The error bars in the Final score are the mean of uncertainty
estimates from the mean of total points.
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3. Results

3.1. TSS Model Comparisons

Figures 4 and 5 show the quantitative comparison between the models using the final scores
which are aggregates of the total scores from different sediment types, backscattering ratios, and solar
zenith angles across all five different water classes for MODIS and Landsat-based models respectively.
The final results presented in Figures 4 and 5 are indications of the overall performance of the
TSS models when weighted across different water types, sediment types and backscattering ratios.
The detailed results of individual model performance in respective sediment types, backscattering
ratios, and water types are presented in Supplementary Material, S11. In addition, the Supplementary
Materials S1–S10 also provide the detailed statistical test results for each TSS model.
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From the final scores displayed in Figures 4 and 5 we can visually observe that there are clearly
high and low performing models. The high performing MODIS TSS models with final scores greater
than 1.5, in the order of highest to lowest final score, are MOD-E6, MOD-A1, MOD-E28, MOD-A4,
MOD-E10, and MOD-E42 and low performing MODIS TSS models with scores less than 0.5 are
MOD-E8, MOD-E2, MOD-E24, MOD-E22 and MOD-E32. For the Landsat TSS models, LAN-E3,
LAN-A4, LAN-E9, LAN-A5, and LAN-A1 have final scores greater than 1.5 while LAN-E11, LAN-E22,
LAN-E16, and LAN-E18 have final scores less than 0.5. In the final scores of low performing TSS
models, the LAN-E18 model has scores of zeros which shows that LAN-E18 failed to derive TSS within
the acceptable TSS bounds of 0.4–5.8 mg/L. We suspect the published algorithm includes an error.
The overall ranking of the TSS models using the final scores for each TSS model is also presented
in Tables B1 and B2 for MODIS and Landsat respectively. Further, Tables B1 and B2 provides mean
total scores for different sediment types, backscattering ratios, and solar zenith angles in all five water
classes for respective TSS model.

With respect to the results displayed in Figures 4 and 5, without the inclusion of error bars the
distinction between the high performing TSS models is clear and we can easily compare the scores of
each TSS model to obtain a ranking. For instance, in Figures 4 and 5, the MOD-E6 and LAN-E3 are the
highest scoring models with final scores of 1.70 and 1.73 respectively. However, on inclusion of the
error bars, all high performing TSS models may be considered comparable and difficult to separate in
terms of robustness, thus may all be ranked equally. Likewise, the case is similar for low performing
TSS models where their error bars overlap. Further, we observe that two and three of the top five
high scoring TSS models in MODIS and Landsat respectively are semi-analytic while none of the
semi-analytic models were in the bottom five low scoring models.

3.2. Evaluation of Models

3.2.1. Model Evaluation Using HydroLight Data

The five high and low scoring models from MODIS and Landsat TSS models were selected to
further evaluate their performance. From all available HydroLight data discussed in Section 2.1.2,
the aforementioned high scoring TSS models were evaluated for their Relative Error (RE) between
model-derived and HydroLight TSS. From the results presented in Table 3 we observe that there is high
variability in the RE results amongst the respective MODIS and Landsat TSS models. The differences
in the Smallest Relative Error (SRE) for high scoring TSS models were not as large as the differences
within the MARE and Largest Relative Error (LRE). The MARE ranged from a low of 69.96% to a high
of 481.82% while the SRE and LRE ranged from 15% to 63.14% and 139.35% to 1109.80% respectively. In
the low scoring models, the high variability in the RE was observed with the MARE for low performing
models ranging from 106.43% to 1832.79% while the SRE and LRE ranged from 39.90% to 213.54%
and 118.16% to 6778.93% respectively. In both MODIS and Landsat high scoring models, the LRE
results were for backscattering ratios of 0.001 and for Bukata type sediment. The SRE results were
for backscattering ratios of 0.01 and calcareous sand sediment. Further, for the SRE in both the high
and low performing TSS models, we observe that the high and low performing TSS models scored
reasonably well in either one of the categories in sediment types, backscattering ratios, solar zenith
angle and water classes. For instance, the low performing LAN-E22 scored higher than most of the
high scoring TSS models in SRE results which indicated that LAN-E22 retrieves better in one of the
water types.
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Table 3. Relative Error and ∆Rrs Uncertainty Tolerance results for the highest and lowest scoring
models’ evaluation using HydroLight Data. The highest scoring models are in bold text and the lowest
scoring models are in regular italic text. The results provided in parenthesis represent the +∆Rrs and ‘-’
indicates the model failed to provide TSS estimation within acceptable bounds. SRE: Smallest Relative
Error. LRE: Largest Relative Error. MARE: Mean Absolute Relative Error. ARE: Absolute Relative Error.

Model
Relative Errors from HydroLight

Data Validation ARE from RRS Uncertainty (%)

SRE (%) MARE (%) LRE (%) −(+) 10% ∆ Rrs −(+) 20% ∆ Rrs −(+) 50% ∆ Rrs

MOD-E6 59.35 94.30 139.35 70.46 (113.02) 44.59 (129.11) 91.94 (170.65)
MOD-A1 15.00 75.56 151.14 39.24 (126.59) 38.89 (182.84) 97.92 (294.93)
MOD-E28 51.61 148.62 191.97 97.96 (211.76) 49. 89 (271.68) 53.30 (497.21)
MOD-A4 63.14 257.59 386.87 157.51 (346.27) 68.10 (410.35) 96.13 (530.23)
MOD-E10 32.17 92.42 171.47 53.64 (149.97) 33.54 (242.01) 49.85 (396.29)
MOD-E8 189.55 220.69 344.16 244.77 (197.29) 268.89 (180.18) 341.16 (164.68)
MOD-E2 189.55 220.69 344.16 244.77(197.29) 268.89 180.18() 341.16 (164.68)
MOD-E24 77.87 141.49 218.80 10824.61 (9960.40) 11278.06 (9549.92) 12747.84 (8416.88)
MOD-E22 42.31 1832.79 5403.47 2461.87(1149.55) 1369.44 (1306.50) 187.31 (1206.94)
MOD-E32 39.90 1717.85 6778.93 2575.05(1067.58) 1381.65 (1385.73) 184.20 (288.28)
LAN-E3 59.31 120.37 166.68 69.03 (170.14) 33.14 (220.15) 76.58 (387.62)
LAN-A4 57.05 197.26 266.40 134.36 (262.03) 72.73 (331.63) 74.29 (541.89)
LAN-E9 23.52 481.82 1109.80 171.42 (857.00) 51.00 (1167.00) 92.43 (1974.47)
LAN-A5 62.86 244.28 362.44 149. 20 (341.63) 66. 53 (414.85) 95.90 (543.85)
LAN-A1 16.07 69.96 141.53 38.02 (115.85) 39.00 (169.17) 97. 78 (286.31)
LAN-E10 76.17 106.43 118.16 88.74 (126.91) 82.69 (161.62) −(357.92)
LAN-E11 213.54 241.28 337.58 260.07 (22.48) 278.86 (203.89) 335.21 (177.52)
LAN-E22 19.41 110.69 164.56 110. 70 (110.688) 110. 64 (110.72) 196.66 (110.60)
LAN-E16 77.55 135.45 222.93 150.00 (109.18) 151.20 (103.59) 223.24 (85.67)
LAN-E18 - - - - - -

The TSS derived using real satellite-data are bound by uncertainty related to observational,
instrumental, measurement and data processing errors, the latter largely associated with the
atmospheric correction procedure [66]. Thus, to assess the tolerance of high and low performing
TSS models to the uncertainties in Rrs, which is the key input in derivation of the TSS concentration,
we simulated the effect of Rrs uncertainty (∆Rrs) by varying the Rrs by ±10%, ±20% and ±50% of
the HydroLight generated Rrs at each of the MODIS and Landsat bands. The Rrs ± ∆Rrs was used
in deriving TSS concentration and compared with HydroLight input TSS to calculate the Absolute
Relative Error (ARE) of the TSS model. Table 3 reports the ARE and the MARE of HydroLight Data
Validation as defined in Equation C2 in Appendix C. In general, we observe that with the increase
in ∆Rrs the ARE also increases and the errors are higher for +∆Rrs than −∆Rrs. The ARE for high
scoring TSS models ranged from 33.14% to 1974.47% while for low scoring TSS models it ranged from
82.69% to 12747.84% which shows both high and low performing TSS models are not impervious
to uncertainty in Rrs measurements. However, high scoring TSS models show better tolerance to
∆Rrs than the low scoring TSS models. The details of the TSS models deviation in estimating TSS
concentration from the error-free HydroLight data with ∆Rrs are shown in Table 3.

3.2.2. Model Evaluation Using In situ Data

As part of a regional water monitoring program, in situ reflectance and TSS measurements were
carried out for the waters off the coast of northern Western Australia to develop regional TSS models
(see MOD-A1 and LAN-A1 in Appendix A) [67]. The details of the in situ measurements and regional
TSS model developed using in situ data can be obtained from [67]. A set of high scoring models
(MOD-E10, MOD-A4, LAN-E9, and LAN-A5) and low scoring models (MOD-E1, MOD-E38, LAN-E6,
and LAN-A3) were selected to compare with MOD-A1 and LAN-A1 in the context of in situ data
comparisons. These subsets of models were selected because the reflectance bands used by other high
scoring models were beyond the available reflectance bands in the in situ data. Table 4 shows the Mean
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RE results obtained from each of the model evaluations against in situ data. Table 4 displays a high
variability in the Mean RE for model comparisons for high scoring models with in situ data, from a low
of 43.11% for LAN-E9 to a high of 102.59% for LAN-A5. When compared with the regional model’s
MOD-A1 and LAN-A1 MARE results, we see that both the high scoring TSS models MOD-E10 and
LAN-E9 and low scoring TSS models LAN-E6 and LAN-A3 were comparable. However, the results
presented in Table 4 also show the extreme variability observed in the Mean RE for the low scoring
models with a low of 35.62% and a high of 256%.

Table 4. The MARE for high and low scoring models for in situ data. The high scoring models are in
bold text and the low scoring models are in italics.

Error/
Model MOD-E10 MOD-A1 * MOD-A4 MOD-E1 MOD-E38 LAN-E9 LAN-A1 * LAN-A5 LAN-E6 LAN-A3

Mare
(%) 46.20 33.33 100.85 341.04 256.00 43.11 33.36 102.59 55.23 35.62

* MARE was obtained using the leave-one-out cross validation method discussed in [67].

4. Discussion

4.1. Data and Methodological Limitation

The data used in this study to quantitatively compare TSS models have been generated using
the widely used [68,69] in-water radiative transfer model HydroLight 4.2. The simulated data do not
encompass all different water types in which each TSS model was developed to be used, however,
it does provide us with a dataset that is independent of the data that has been used to parameterize
the models to avoid biases in the results. To include all the models in comparisons, the simulated data
were extrapolated to the NIR region of the spectrum using the methods discussed in Section 2.1.2.
The extrapolation of reflectance data can introduce unrealistic values if the underlying assumptions of
the spline extrapolation methodology does not hold true for the NIR regions. The extrapolation of
the data is not ideal when used in modelling remote sensing products but the error for extrapolation
had a MARE of 4.0% which was considered to be acceptable for this study. The ideal case for data for
model comparisons would be to use a real global water data base, which is currently not available.
The NOMAD dataset (http://seabass.gsfc.nasa.gov/) that is currently the most extensive dataset of in
situ reflectance measurement and in-water variables did not contain the TSS measurements essential
for this study.

The use of the objective methodology [44] of comparing models, used in this study to compare
TSS models, can aid users in selection of TSS models that are best suited for waters of regional interest
in the absence of means and a method to produce their own regionally tuned TSS algorithms. However,
the objective methodology used here is not without limitations, as discussed by [44] with respect
to using average performance to classify between high and low performing models. The very low
performance of one particular model would affect the average of all other models to the extent that it
becomes difficult to differentiate scores between models. For example, in Figure S11.1 for the score
of MODIS TSS models in yellow clay, MOD-E1-2, E8-9, E15, E22-24, E32, and E38 all have low scores
which increases the score of other TSS models making it difficult to differentiate among high scoring
models. This problem is further exacerbated when the majority of TSS models score low which makes
the few remaining high scoring models to appear similar in score, which is the case in Figure S11.22
for bb/b of 0.001.

The objective classification was conducted on a case by case basis for different water types,
sediment types, solar zenith angles, and backscattering ratios. The overall low performance of models
in the final scores in Figures 4 and 5 does not necessarily mean that low performing TSS models scored
less in all the categories used in deriving the final score. For example, in Figure 5, LAN-E22 scored
a very low final score when compared to other TSS models, but when considering specific results as
presented in Figures S11.16–S11.20, LAN-E22 received a score at least comparable with most of the

http://seabass.gsfc.nasa.gov/
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best performing models in all water classes for the red clay sediment type. Likewise, similar cases
can be ascertained for all the respective TSS model’s scores for specific water classes, sediment types,
backscattering ratios and solar zenith angle (Results provided as Supplementary Material S11 for
other overall low scoring TSS models in Figures 4 and 5). An additional disadvantage of the objective
methodology used here is that the final score does not necessarily show the performance of all models
in different categories considered, it shows only the relative performance of models in comparison
with the mean scores of TSS models. In Figure S11.1, we observe that almost all TSS models score
relatively higher total points for brown earth and lower for Bukata sediment types when compared
with other sediments.

To account for the methodological uncertainties from the range of univariate statistical tests
described in Section 2.3, we used a bootstrapping method [44,65] which generates the confidence limit
in the final score. The results from the 1000 bootstrap runs presented in all the score charts shows that
the mean score of models did not vary significantly for each different run, the ranges of 95% confidence
limits were smaller for most of the models. Further, to limit the effect of spurious TSS values derived
by some of the models, especially models with exponential and power functions, we filtered out
any derived TSS value below a minimum of 0.001 mg/L and greater than a twice the maximum TSS
concentration of each TSS model. Filtering out the spurious results can artificially inflate the final
scores because only values that are within the upper and lower bounds would be considered for
statistical tests. However, the possible percentage retrieval test discussed in Section 2.3.6 negate such
an effect because filtering out spurious results would result in lower possible percentage retrieval and
lower score in the percentage retrieval test.

4.2. TSS Model Selection Guidelines

Even though there were clearly distinct higher and lower performing TSS models from the
final score chart presented in Figures 4 and 5, the performance of individual models varied widely
when viewed against respective water types, sediment types, and backscattering ratios. The results
presented in Figures 4 and 5 can be of use to the end-users who are clearly interested in TSS models
that are robust enough to be used in waters for which they have little or no information of their
optical and physical properties to generate TSS products. Figures 4 and 5 indicate that the MODIS
TSS models MOD-E6, MOD-A1, MOD-E28, MOD-A4 and MOD-E10 and the Landsat TSS models
LAN-E3, LAN-A4, LAN-E9, LAN-A5 and LAN-A1 are ranked the highest in terms of likely suitability
for estimating TSS concentration of unknown water types. An example of the selection of high
performing TSS models using a real water dataset was demonstrated in Section 3.2.2 and it can
be seen that the results varied widely among the high scoring TSS models, with MOD-E10 and
LAN-E9 producing results within a MARE of 46.20% and 43.11% and other higher scoring models
producing results as high as 102.59%. Considering the retrieval error of TSS concentrations from MODIS
algorithms are typically reported as in the range of ~18.0% to ~61% for many studies conducted in
the last decade [35,37,38,46,47], we consider the regional TSS models MOD-A1 and LAN-A1, and the
empirical models MOD-E10 and LAN-E9 as being the most appropriate for the waters in the north of
Western Australia.

However, readers with prior information of water and sediment types can use information
provided in S11, and Tables B1 and B2 as a guideline in selecting the model that is best suited for
that particular water type. The difference in Relative Error between the high and low scoring models
validated using HydroLight data and the in situ data showed that there is a huge difference between
the two. The best performing model from the high scoring models shows that TSS can be estimated
with a Mean RE between 69.96% and 481.82% (for different water conditions), but the low scoring
model’s results can vary dramatically within a Mean RE ranging from 106.43% to 1832.79%. The high
Mean RE for low scoring models does not necessarily mean that the low scoring model performs
low for all waters types. The low scoring TSS model’s performance in one category or more can
be significantly better than other models, but overall on average the model performs poorly when
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compared with high scoring models across all water types. For example, the low scoring model
LAN-E22 displays the Smallest RE of 19.41% which is certainly better than the Smallest RE of most of
the high scoring model’s Smallest RE. Thus, with prior knowledge of water types and bio-geochemical
properties of the region, we can select a TSS model from both high and low performing TSS models
presented in Tables B1 and B2 that have higher scores in the water that are similar to the region where
TSS model would be applied.

The results also showed that semi-analytic models were generally higher in ranking when
compared with empirical models. The reason for most semi-analytic models performing better than
empirical models can be attributed to the fact that semi-analytic models, by design, were based on
radiative transfer theory [38,70] and one or more parameters were calibrated using general in situ
bio-optical properties representative of a wide range of global waters [7,38].

5. Conclusions

In summary, in this study we have applied an objective methodology to compare the TSS models
and their suitability in use for retrieving TSS in the absence of a regionally tuned TSS model. From the
study we have identified the MODIS TSS models MOD-E6, MOD-A1, MOD-E28, MOD-A4 and
MOD-E10 and the Landsat TSS models LAN-E3, LAN-A4, LAN-E9, LAN-A5 and LAN-A1 as suitable
for estimating TSS concentration in waters with no prior knowledge of bio-optical or bio-geochemical
properties. The results from this study highlighted the impact of “local tuning” of algorithms, showing
that some low scoring models performed better than the high scoring models in one or more specific
sediment, backscattering, solar zenith and water types. The results from this study can be used to
ascertain which TSS models perform well in particular water types, sediment types and backscattering
ratios for use in aiding the selection of a TSS model suited for use in a particular water type. In addition,
the results also show that the semi-analytic TSS models are generally better than empirical TSS models
in deriving TSS estimation in unknown water types.

Supplementary Materials: The following supplementary materials are available online at www.mdpi.com/2072-
4292/8/10/810/s1. Figure S1.1: Scatter plot of MODIS-TSS models in CLASS-I water for brown earth sediment
with bb/b ratio of 0.018 and solar zenith angle of 30◦, Figure S1.2: Scatter plot of MODIS-TSS models in CLASS-I
water for bukata sediment with bb/b ratio of 0.018 and solar zenith angle of 30◦, Figure S1.3: Scatter plot of
MODIS-TSS models in CLASS-I water for calcareous sand sediment with bb/b ratio of 0.018 and solar zenith
angle of 30◦, Figure S1.4: Scatter plot of MODIS-TSS models in CLASS-I water for red clay sediment with bb/b
ratio of 0.018 and solar zenith angle of 30◦, Figure S1.5: Scatter plot of MODIS-TSS models in CLASS-I water for
yellow clay sediment with bb/b ratio of 0.018 and solar zenith angle of 30◦, Figure S1.6: Scatter plot of MODIS-TSS
models in CLASS-I water for calcareous sand sediment with bb/b ratio of 0.001 and solar zenith angle of 30◦,
Figure S1.7: Scatter plot of MODIS-TSS models in CLASS-I water for calcareous sand sediment with bb/b ratio of
0.01 and solar zenith angle of 30◦, Figure S1.8: Scatter plot of MODIS-TSS models in CLASS-I water for calcareous
sand sediment with bb/b ratio of 0.05 and solar zenith angle of 30◦, Figure S1.9: Scatter plot of MODIS-TSS models
in CLASS-I water for calcareous sand sediment with bb/b ratio of 0.1 and solar zenith angle of 30◦, Figure S1.10:
Scatter plot of MODIS-TSS models in CLASS-I water for calcareous sand sediment with bb/b ratio of 0.081 and
solar zenith angle of 15◦, Figure S1.11: Scatter plot of MODIS-TSS models in CLASS-I water for calcareous sand
sediment with bb/b ratio of 0.081 and solar zenith angle of 45◦, Figure S1.12: Scatter plot of MODIS-TSS models
in CLASS-I water for calcareous sand sediment with bb/b ratio of 0.081 and solar zenith angle of 60◦; Figures in
S2, S3, S4 and S5 all aforementioned Figures in S1 in CLASS-II, CLASS-III, CLASS-IV and CLASS V water type.
In S6 and S10 are similar aforementioned Figures in S1–S5 but for Landsat TSS models; Figure S11.1–S11.5: Total
scores for different sediment and the average score across all five sediments in CLASS-I, CLASS-II, CLASS III,
CLASS IV and CLASS V water type respectively, Figures S11.6–S11.10: Total scores for different backscattering
ratios and the average scores across all backscattering ratios in CLASS-I, CLASS-II, CLASS III, CLASS-IV and
CLASS-V water type respectively, Figures S11.11–S11.15: Total scores for different solar zenith angles and the
average scores across all solar zenith angles in CLASS-I, CLASS-II, CLASS-III, CLASS IV, and CLASS-V water
type respectively, Figures S11.16–S11.30 are similar to Figures S11.1–S11.15 but for Landsat TSS models.
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Appendix A

Table A1. The summary of TSS algorithms mentioned in Section 2.2.

Algorithm Reference Location TSS Range
(mg/L) Bands/Algorithms Regression

Coefficient (R2) Error N

MOD-E1 Kumar, et al.
(2016) [71]

Chilika Lagoon,
India 3.9–161.7 TSS = 13181 Rrs(B1)2 − 1408.6 Rrs(B1) + 44.15 0.915 RMSE = 2.64 mg/L 54

MOD-E2 Ayana, et al.
(2015) [40]

Gumera
catchment, Lake
Tana, Ethiopia

~5–255 TSS = 2371ρ(B2)− 62.8 0.95 SE = 10.77 mg/L 54

MOD-E3 Chen, et al.
(2015) [22]

Estuary of Yangtze
River and Xuwen
Coral Reef, China

5.8–577.2

l og(TSS) = −b+
√

b2−4a(c−y)
2a

}
Rrs(B1) < 0.025

log(TSS) = −b+
√

b2−4a(c−y)
2a

}
Rrs(B1) > 0.025

a = −0.334, b = 1.0046, c = 0.8251, (b2− 4a(c− y)) ≥ 0
y = log(Rrs(B2))/log(Rrs(B1))

0.752 RMSE = 2.1 mg/L
RMSE = 38.6 mg/l 40

MOD-E4
Zhang, et al.

(2016) [72] and Shi,
et al. (2015) [21]

Lake Taihu, China 1.7–343.9 TSS = 9.65exp(58.81Rrs(B1)) 0.70 RMSE = 14.0 mg/L 150

MOD-E5 Choi, et al.
(2014) [34]

Mokpo coastal
area, Korea 1.03–193.10 TSS = 1.545exp(179.53Rrs(B1)) 0.92 - 96

MOD-E6 Feng, et al.
(2014) [35] Yangtze estuary 4.3–1762.1

TSSlow = 2.49exp (97.19Rrs(B1))} TSS < 10(mg/l)
TSShigh = 57.58exp (3.48 (Rrs(B2)/Rrs(B1)))

}
TSS > 150(mg/l)

TSSmid = α× TSSlow + β× TSShigh

}
50 < TSS < 150(mg/l)

α =
ln(TSSlow/50)

ln(150/50) , β =
ln(150/TSSlow)

ln(150/50)

0.88 (low)
0.93 (high) RMSE = 27.7% 78

MOD-E7 Hudson, et al.
(2014) [23]

Fjord in Southwest
Greenland 1.2–716 TSS = 1.80exp(19.11(Rrs(B1) + Rrs(B2)) 0.84 - 143

MOD-E8 Kaba, et al.
(2014) [31]

Lake Tana,
Ethiopia ~5–255 TSS = 2371× ρ(B2)− 62.8 0.95 RMSE = 16.5 mg/L 54

MOD-E9 Lu, et al. (2014) [73] Bohai Sea, China ~<160 TSS = exp
(

Rrs(B1)−0.0123
0.0038

)
0.75 RE ≤ 20% 627

MOD-E10 Park and Latrubesse,
(2014) [32]

Amazon River
system 30–150 TSS = 27.05exp(7.83ρ(B1)) 0.88 RMSE = 6.2 mg/L 232

MOD-E11 Sokoletsky, et al.
(2014) [74]

Yangtze river
estuary 0–2500 TSS = 10(2×[Rrs(B1)/Rrs(B4)]) - 361

MOD-E12 Chen, et al.
(2014) [61] Bohai Sea 4–106.4 TSS = 3× 108x3 − 2× 106x2 + 5453.3x + 3.8825

x = ρw(B15)− 1.107ρw(B16)
0.954 RMS = 30.12% 48
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Table A1. Cont.

Algorithm Reference Location TSS Range
(mg/L) Bands/Algorithms Regression

Coefficient (R2) Error N

MOD-E13 Cui, et al. (2013) [75] Ponyang lake,
China 0–141.9 TSS = 1.063exp(27.859ρ(B1)) 0.91 SE = 11.20 mg/L 54

MOD-E14 Kazemzadeh, et al.
(2013) [76]

Bahmanshir River,
Iran 30–500 TSS = 22.92ρ(B1)0.82 0.63 RMSE = 261.84 23

MOD-E15 Raag, et al.
(2013) [17]

Pakri Bay, Gulf of
Finland 0–10 TSS = 592.54ρ(B1)) + 1.1136 0.52 77

MOD-E16 Qui (2013) [46] Yellow River
Estuary, China 1.9–1896.5 TSS = exp

(
1.1932

(
Rrs(B12)
Rrs(B14)

)0.875
)

0.95 MAE = 24.5 mg/L 81

MOD-E17 Villar, et al.
(2013) [77] Maderia River 25–622 TSS = 1020

(
Rrs(B2)
Rrs(B1)

)2.94
0.62 - 282

MOD-E18 Min, et al.
(2012) [78]

Saemangeum
coastal area, Korea 0.1–55 TSS = 0.24exp(188.3Rrs(B12)) 0.90 - 88

MOD-E19 Ondrusek, et al.
(2012) [62] Chesapeake Bay 4.5–14.92 TSS = 3.8813(nLw(645))3 − 13.822(nLw(645))2

+19.61(nLw(645))
0.95 MPD = 4.2% 35

MOD-E20 Son and Wang,
(2012) [39] Chesapeake Bay 1.0–20 TSS = 1.7 + 5.263 Kd(490) 0.77 STD = 0.48 15,720

MOD-E21 Wang, et al.
(2012) [60]

Hangzhou Bay,
China 133–1,950 TSS = 1.4599

(
Rrs(B1)
Rrs(B2)

)2.3874
0.82 35

MOD-E22 Chen, et al.
(2011) [24]

Apalachicola Bay,
USA 1.29–208 log(ρ(B2)/log(ρ(B1)) = −0.1325log(TSS)2 + 0.7429log(TSS) + 0.6768 0.86 RMSE = 4.76 mg/L 32

MOD-E23 Chen, et al.
(2011) [36]

Apalachicola Bay,
USA 1.29–208 log(ρ(B2)/log(ρ(B1)) = 0.4339log(TSS) + 0.8288 0.8 RMSE = 4.79 25

MOD-E24 Jiang and Liu(2011)
as cited in [22]

Poyang Lake,
China 0–40 TSS = 1365.5x2 − 369.08x + 27.216

x = Rrs(B3) + Rrs(B4)
0.81 - 27

MOD-E25 Siswanto, et al.
(2011) [79]

Yellow and East
China Sea 0.04–340.07 TSS = 10(0.649+25.623(Rrs(B12)+Rrs(B13))−0.646( Rrs(B10)

Rrs(B12) )) 0.92 RPD = 15.7% 223

MOD-E26 Zhao, et al.
(2011) [80]

Mobile Bay
estuary, Alabama 0–87.8 TSS = 2.12exp(42.92ρ(B1)) 0.781 RMSE = 5.42 63

MOD-E27

Petus, et al.
(2010) [81] and

Petus, et al.
(2014) [37]

Bay of Biscay,
France 0.3–145.6 TSS = 12450 Rrs(B1)2 + 666.1Rrs(B1) + 0.45 0.97 RMSE = 61% 74
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Table A1. Cont.

Algorithm Reference Location TSS Range
(mg/L) Bands/Algorithms Regression

Coefficient (R2) Error N

MOD-E28 Wang and Lu
(2010) [25]

Yangtze River,
China 45–909 TSS = 61.369exp(0.2623x)

x(%) = ρ(B2)− ρ(B5) 0.78 RRMSE = 36.5% 35

MOD-E29 Wang, et al.
(2010) [82]

Apalachicola Bay,
USA 1–64 log(TSS) = 1.5144 (log(ρ(B2))/log(ρ(B1)))− 0.5755 0.72 - 16

MOD-E30 Wang, et al.
(2010) [47]

Middle and Lower
Yangtze River,

China
75–881 TSS = 60.24x− 23.03

x(%) = ρ(B2)− ρ(B5) 0.73 RMSE = 29.7% 153

MOD-E31 Zhang, et al.
(2010) [83]

Yellow and East
China Sea 0.68–27.2

log(TSS) = s0 + s1(Rrs(B4) + Rrs(B1))
+s2(Rrs(B10)/Rrs(B4))

s0 = 0.6311, s1 = 22.2158, s2 = −0.5239
0.87 ARE = 26% 81

MOD-E32 Chen, et al.
(2009) [63]

Apalachicola Bay,
USA 1.29–208 log(ρ(B2)/log(ρ(B1)) = −0.1356log(TSS)2 + 0.7402log(TSS) + 0.6836 0.853 RMSE = 5.5 mg/L 25

MOD-E33 Chu, et al.
(2009) [84]

Kangerlussuaq
Fjord, Greenland ~500 TSS = 10(

Rrs(B1)−1.6
7.5 ) - - -

MOD-E34 Doxaran, et al.
(2009L) [85]

Gironde Estuary,
France 77–2182 TSS = 12.996exp (Rrs(B2)/(0.189Rrs(B1))) 0.89 RMSE: 18%–22% 204

MOD-E35 Jiang, et al.
(2009) [86] Taihu Lake, China 0–170 TSS = 10(0.3568ln(Rrs(B2)+3.3431) 0.81 ARE = 20.5% 56

MOD-E36 Liu and Rossiter
(2008) as cited in [22]

Poyang Lake,
China 15.6–518.8 TSS = 7167ρ(B1)− 42.0 0.91 - 25

MOD-E37 Wang, et al.
(2008) [87]

Hangzhou Bay,
China 17–6949 TSS = exp (43.233Rrs(B2) + 1.396) 0.76 RMSE = 424 mg/L 25

MOD-E38 Wu and Cui (2008)
as cited in [22]

Poyang Lake,
China 0-142 TSS = 86236.23(Rrs(B1))3 − 15858.70(Rrs(B1))2

+1005.29(Rrs(B1))− 15.67
0.92 - 42

MOD-E39 Kutser, et al.
(2007) [26]

Muuga and
Sillmae Port,

Estonia
2–8 TSS = 349.83ρ(B1) + 2.9663 0.86 - 11

MOD-E40 Liu, et al. (2006) [58] Middle Yangtze
River, China 23.4–61.2

TSS = exp(2.495x + 1.81)
x =

ρ(B1)−ρ(B2)
ρ(B1)+ρ(B2)

0.72 RE = 34.7% 41

MOD-E41 Sipelgas, et al.
(2006) [27] Parki Bay, Finland 3–10 TSS = 110.3ρ(B1) + 2.0 0.58 - 48
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Table A1. Cont.

Algorithm Reference Location TSS Range
(mg/L) Bands/Algorithms Regression

Coefficient (R2) Error N

MOD-E42 Miller and Mckee,
(2004) [3]

Northern Gulf of
Maxico, USA 1.0–55.0 TSS = 1140.25× Rrs(B1)− 1.91 0.89 RMSE = 4.74 mg/L 52

MOD-A1 Dorji, et al.
(2016) [67]

Onslow, Western
Australia 2.4–69.6 TSS =

23.47
(

x(B1)
1−x(B1)

)
1−0.69

(
x(B1)

1−x(B1)

)
∣∣∣∣∣ x(B1) =

−g1+
√
(g1)2+4g2rrs(B1)

2g2

g1 = 0.084, g2 = 0.17, and rrs(B1) = Rrs(B1)/(0.52 + 1.7Rrs(B1))
0.85 MARE = 33.33% 48

MOD-A2 Han, et al.
(2016) [88]

Europe, French
Guiana, Vietnam,

North Canada,
and China

0.154–2627

TSS = WL ·TSSL+WH ·TSSH
WL+WH

WL =


1, i f Rrs(B1) ≤ 0.03sr−1

0, i f Rrs(B1) ≥ 0.04sr−1

log10(0.04)− log10(Rrs(B1)), otherwise
|TSSL =

404.4ρw(B1)
1−ρw(B1)/0.5

WH =


0 i f Rrs(B1) ≤ 0.03sr−1

1, i f Rrs(B1) ≥ 0.04sr−1

log10(Rrs(B1))− log10(0.03), otherwise
|TSSH =

1214.669ρw(B1)
1−ρw(B1)/0.3394

- MRAD = 51.9-59% TSSL = 366
TSSH = 46

MOD-A3 Shen, et al.
(2014) [89]

Yangtze estuary,
China -

Rrs = αβ×TSS
1+β×TSS+

√
1+2β×TSS

Rrs(B2)} α = 0.1038, β = 1.8042
0.91 RMSE = 0.0048

(sr−1) 144

MOD-A4 Vanhellemont and
Ruddick (2014) [11]

Southern North
Sea, UK 0.5–100 TSS =

258.85ρ(B1)
1−ρ(B1)/0.1641

ρ(B1) = 0.529× π × rrs(B1)
- - -

MOD-A5 Chen, et al.
(2013) [56]

Changjiang River
Estuary, China 70–710 TSS = 1.7492 (Rrs(B16)−1 − Rrs(B15)−1)

−1
+ 0.0912 0.89 MRE = 28.99% 20

MOD-A6 Katlane, et al.
(2013) [90] Gulf of Gabes 0.7–30 TSS = 62.86

(
ρ(B1)

(0.1736−ρ(B1))

)
ρ(B1) = πRrs(B1)

- - 56

MOD-A7 Nechad, et al.
(2010) [38]

Southern North
Sea 1.24–110.27 TSS =

400.75ρ(B1)
1−ρ(B1)/0.1774 + 1.02

ρ(B1) = 0.539× πrrs(B1)
0.80 RMSE = 11.23 mg/L

MRE = 38.9% 72

LAN-E1 Cai, et al. (2015) [91] Hangzho Bay,
China 203–481 ln(TSS) = 0.01113115× L(TM4) + 4.794229 0.951 - 35

LAN-E2 Cai, et al. (2015) [92] Hangzho, Bay 179–389.58 TSS = 314.435ρ(TM3) + 3805.982ρ(TM4) + 28.54 0.976 - 27

LAN-E3 Kong, et al.
(2015) [7] Gulf of Bohai Sea 2.1–208.7 TSS = 5.184 + 1349.63Rrs(TM4) + 614561.673 [Rrs(TM4)]2 0.844 RMSE = 5.59 70

LAN-E4 Kong, et al.
(2015) [93]

Caofeidian, Bohai
Sea 4.3–104.1 TSS = 296.29x2 − 272.62x + 70.939

x = Rrs(TM3)/Rrs(TM2)
0.977 RMSE = 7.22 mg/L

MRE = 25.35
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Table A1. Cont.

Algorithm Reference Location TSS Range
(mg/L) Bands/Algorithms Regression

Coefficient (R2) Error N

LAN-E5 Lim and Choi
(2015) [94]

Nakdong River,
South Korea ~3–14 TSS = 11.80− 50.608ρ(OLI2) + 14.58ρ(OLI5)

−4.764ρ(OLI5)/ρ(OLI3) 0.74 RMSE = 1.40 48

LAN-E6 Wu, et al. (2015) [9] Dongting Lake,
China 0–63.2 TSS = 1.1034× exp(23.61× ρ(OLI4)) 0.91 RMSE = 4.41 mg/L 52

LAN-E7 Zheng, et al.
(2015) [95]

Dongting Lake,
China 4.0–101 TSS = 4616.4× Rrs(TM4)− 4.362 0.82 MAPE = 21.3%

RMSE = 7.01 mg/L 42

LAN-E8 In-Young, et al.
(2014) [96]

Old Women Creek
Estuary, Ohio, US 1.0–278 Turb = 14.44× ρ(%, ETM4) + 7.61

Turb = 1.03TSS− 3.54 0.65 11

LAN-E9 Zhang, et al.
(2014) [10]

Yellow river
estuary 1.0–1500 log10(TSS) = 44.072× Rrs(TM3 + 0.1591) 0.9672 MRE = 26.1% 44

LAN-E10 Hao, et al.
(2013) [97]

Yangtze Estuary,
China ~40.0–750 R(B4) = 0.0444 + 32.7736× [TSS/ (51.6753 + TSS)]

−32.7260× [TSS/ (51.6753 + TSS)]× exp(−0.0000012081× TSS) 0.8175 ARE = 36.83 17

LAN-E11 Hicks, et al.
(2013) [98]

Waikato River,
New Zealand 2.0–962 TSS = −52.817 + 1449.4ρ(ETM4) 0.939 RMSE = 21.3 35

LAN-E12 Min, et al.
(2013) [78]

Saemangeum
coastal area, Korea 0.1–55 TSS = 0.24exp(188.3Rrs(TM2)) 0.90 - 88

LAN-E13 Miller, et al.
(2011) [99]

Albemarle-Pamlico
Estuarine System,
North Carolina,

USA

~5.0–30 TSS = 1.7 + 684.76ρ(%, ETM3) 0.87 - 599

LAN-E14 Li, et al. (2010) [100] Changjiang
Estuary ~1.5–560

1og10(TSS) = 0.892 + 6.2244x
x = [ρ(ETM2)+ρ(ETM3)]

[ρ(ETM2)/ρ(ETM3)]
0.915 - 21

LAN-E15 Wang, et al.
(2009) [12]

Yangtze river,
China 22–2610 ln(TSS) = 3.18236× ln(%, ρw(ETM4)) 0.88 MRE = 14.83% 24

LAN-E16
Onderka and

Pekarova
(2008) [101]

Danube River,
Slovakia 19.5–57.5 TSS = 4.17× L(ETM4)− 43.22 0.93 SE = 3.2 mg/L 10

LAN-E17 Teodoro, et al.
(2008) [102]

Douro River and
Mira Lagoon,

Portugal
14–449 TSS = 15.483− 12.688ρ(TM1) + 44.495ρ(TM3) 0.995 RMSE = 25.3 mg/L 11
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Table A1. Cont.

Algorithm Reference Location TSS Range
(mg/L) Bands/Algorithms Regression

Coefficient (R2) Error N

LAN-E18 Aparslan, et al.
(2007) [103]

Omerli Dam,
Turkey 0.4–2.9 TSS = 42.2671− 0.8694ρ(ETM1)− 0.3716ρ(ETM2)

+1.05ρ(ETM3) + 0.1247ρ(ETM4) 0.99 SE = 0.0085 mg/L 6

LAN-E19 Wang, et al.
(2007) [104]

Yangtze River,
China 0–900 TSS = 71.392× ρ(%, ETM4)− 272.48 0.92 MAE = 68.9

RMSE = 83.2 14

LAN-E20 Doxaran, et al.
(2006) [105]

Gironde Estuary,
France 10–2000 TSS = 29.022× exp(0.0335x)

x = Rrs(ETM4)/Rrs(ETM2)(%)
0.88 SD = 21% 132

LAN-E21 Wang, et al.
(2006) [33]

Lake Reelfoot,
USA 11.5–33.5 TSS = 22.74 + 156.202ρ(TM2)− 147.62ρ(TM3)

−45.66ρ(TM4) 0.52 - 18

LAN-E22 Zhou, et al.
(2006) [15] Lake Taihu, China 48.32–120.80 TSS = −122.4 + 304.1

(
ρ(TM4)
ρ(TM1)

)
+ 10.37 0.74 MPE = 65.40%

LAN-A1 Dorji, et al.
(2016) [67]

Onslow, Western
Australia 2.4–69.6 TSS =

25.34
(

x(B1)
1−x(B1)

)
1−0.69

(
x(B1)

1−x(B1)

)
∣∣∣∣∣ x(B1) =

−g1+
√
(g1)2+4g2rrs(B1)

2g2

g1 = 0.084, g2 = 0.17, and rrs(B1) = Rrs(B1)/(0.52 + 1.7Rrs(B1))
0.85 MARE = 33.36% 48

LAN-A2 Han, et al.
(2016) [88]

Europe, French
Guiana, Vietnam,

North Canada,
and China

0.154–2627

TSS = WL ·TSSL+WH ·TSSH
WL+WH

WL =


1, i f Rrs(B1) ≤ 0.03sr−1

0, i f Rrs(B1) ≥ 0.04sr−1

log10(0.04)− log10(Rrs(B1)), otherwise
|TSSL =

346.353ρw(OLI4)
1−ρw(OLI4)/0.5

WH =


0 i f Rrs(B1) ≤ 0.03sr−1

1, i f Rrs(B1) ≥ 0.04sr−1

log10(Rrs(B1))− log10(0.03), otherwise
|TSSH =

1221.390ρw(OLI4)
1−ρw(OLI4)/0.3329

- MRAD = 51.9%–59% TSSL = 366
TSSH = 38

LAN-A3 Zhang, et al.
(2016) [106]

Xinánjiang
Resevoir, China 0.67–5.66 TSS = 38.08× [0.42× ((Rrs(OLI2) + Rrs(OLI3))−1

−(Rrs(OLI3) + Rrs(OLI4))−1)× (Rrs(OLI4) + 0.24]− 3.39
>0.8 MRE = 24.3% 45

LAN-A4 Kong, et al.
(2015) [7] Gulf of Bohai Sea 2.1–208.7 TSS = 8.602 + 1805.26Rrs(TM4) + 900713.14Rrs(TM4)2 0.844 RMSE = 4.53 70

LAN-A5 Vanhellemont and
Ruddick (2014) [11]

Southern North
Sea, UK 0.5–100 TSS =

289.29ρw(OLI4)
1−ρw(OLI4)/0.1686

ρw(OLI4) = 0.529× π × rrs(OLI4)
- - -

MRE = Mean Relative Error, MARE = Mean Absolute Relative Error, MAE = Mean Absolute Error, MPE = Mean Percentage Error, SD = Standard Deviation, MRAD = Mean Relative
Absolute Difference, RMSE = Root Mean Square Error, SE = Standard Error, ARE = Absolute Relative Error, RPD = Relative Percentage Difference, APD = Absolute Percentage
Difference, RRMSE = Relative Root Mean Square Error.
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Appendix B

Table B1. Mean of Total Point and Final Scores of MODIS TSS models across different water classes as derived from different sediment types, backscattering ratios and
Solar Zenith Angles. The top five and bottom five scores from each water types and the final scores are in bold (top) and bold italics (bottom).

MODEL
Mean Total Score from

Sediment
Mean Total Score from

Backscattering Ratio (bb/b)
Mean Total Score from Solar

Zenith Angles Final
Score

Error Final Score

I II III IV V I II III IV V I II III IV V Lower Bound Upper Bound

MOD-E6 1.69 1.61 1.66 1.61 1.63 2.00 1.72 1.98 1.75 1.72 1.71 1.60 1.67 1.53 1.59 1.70 1.64 1.76
MOD-A1 1.46 1.53 1.50 1.56 1.46 1.54 1.71 1.57 1.82 1.67 1.54 1.67 1.55 1.73 1.65 1.60 1.55 1.63
MOD-E28 1.53 1.51 1.53 1.51 1.51 1.71 1.71 1.71 1.74 1.71 1.52 1.55 1.52 1.51 1.56 1.59 1.56 1.63
MOD-A4 1.47 1.55 1.48 1.42 1.43 1.57 1.71 1.57 1.59 1.51 1.61 1.62 1.60 1.54 1.57 1.55 1.51 1.60
MOD-E10 1.54 1.54 1.54 1.54 1.54 1.57 1.57 1.57 1.57 1.57 1.59 1.50 1.55 1.47 1.50 1.54 1.54 1.56
MOD-E42 1.48 1.49 1.46 1.42 1.47 1.57 1.16 1.57 1.76 1.57 1.61 1.17 1.60 1.51 1.62 1.50 1.40 1.63
MOD-E21 1.57 1.50 1.58 1.49 1.50 1.73 1.46 1.76 1.51 1.53 1.68 1.24 1.37 1.20 1.29 1.49 1.40 1.60
MOD-E31 1.45 1.46 1.43 1.42 1.42 1.55 1.60 1.52 1.46 1.46 1.55 1.51 1.51 1.48 1.55 1.49 1.38 1.58
MOD-A6 1.47 1.46 1.49 1.42 1.40 1.43 1.57 1.43 1.57 1.43 1.47 1.54 1.49 1.50 1.47 1.48 1.44 1.53
MOD-A7 1.50 1.47 1.54 1.47 1.44 1.44 1.53 1.57 1.55 1.43 1.53 1.31 1.59 1.28 1.25 1.46 1.39 1.51
MOD-E44 1.32 1.30 1.31 1.26 1.30 1.57 1.56 1.57 1.51 1.55 1.58 1.47 1.57 1.44 1.56 1.46 1.39 1.49
MOD-E27 1.38 1.42 1.37 1.41 1.41 1.46 1.57 1.47 1.57 1.54 1.49 1.33 1.49 1.27 1.35 1.44 1.38 1.50
MOD-E4 1.47 1.41 1.47 1.40 1.42 1.57 1.43 1.57 1.43 1.45 1.49 1.36 1.47 1.32 1.39 1.44 1.41 1.49
MOD-E34 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.45 1.43 1.49 1.43 1.50 1.44 1.43 1.44 1.43 1.46
MOD-E41 1.41 1.40 1.41 1.40 1.41 1.43 1.43 1.43 1.43 1.43 1.46 1.34 1.45 1.32 1.46 1.41 1.41 1.43
MOD-E20 1.36 1.40 1.33 1.46 1.46 1.33 1.47 1.30 1.57 1.52 1.37 1.30 1.33 1.43 1.53 1.41 1.34 1.49
MOD-E35 1.15 1.52 1.15 1.56 1.23 1.29 1.58 1.29 1.68 1.39 1.29 1.53 1.28 1.56 1.40 1.39 1.33 1.51
MOD-E39 1.31 1.31 1.31 1.31 1.31 1.28 1.29 1.29 1.29 1.29 1.31 1.26 1.30 1.25 1.31 1.29 1.29 1.30
MOD-E25 1.15 1.19 1.14 1.32 1.20 1.31 1.40 1.24 1.15 1.34 1.39 1.36 1.31 1.32 1.39 1.28 1.10 1.49
MOD-E3 0.99 1.21 0.83 1.25 1.10 1.39 1.75 1.09 1.67 1.53 1.29 1.33 1.03 1.23 1.53 1.28 1.09 1.48
MOD-E19 1.39 1.22 1.42 1.26 1.24 1.30 1.12 1.40 1.36 1.14 1.38 0.90 1.43 0.98 1.22 1.25 1.05 1.36
MOD-E40 1.14 1.20 1.14 1.23 1.20 1.14 1.29 1.14 1.29 1.29 1.16 1.25 1.15 1.29 1.24 1.21 1.20 1.22
MOD-E11 1.15 1.19 1.12 1.21 1.18 1.23 1.26 1.16 1.18 1.26 1.26 1.19 1.15 1.18 1.25 1.20 1.11 1.28
MOD-E37 1.13 1.09 1.13 1.09 1.10 1.24 1.22 1.25 1.27 1.23 1.14 1.11 1.14 1.11 1.14 1.16 1.08 1.23
MOD-E36 1.18 1.17 1.19 1.17 1.16 1.14 1.14 1.14 1.14 1.14 1.16 1.11 1.15 1.10 1.11 1.15 1.12 1.17
MOD-A5 1.14 1.12 1.14 1.12 1.13 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.13 1.14 1.14 1.14 1.13 1.14
MOD-E5 1.30 1.16 1.32 1.18 1.19 1.19 0.90 1.20 1.08 0.96 1.33 0.94 1.22 1.01 0.97 1.13 1.02 1.26
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Table B1. Cont.

MODEL
Mean Total Score from

Sediment
Mean Total Score from

Backscattering Ratio (bb/b)
Mean Total Score from Solar

Zenith Angles Final
Score

Error Final Score

I II III IV V I II III IV V I II III IV V Lower Bound Upper Bound

MOD-E30 1.12 1.09 1.12 1.08 1.09 1.14 1.14 1.14 1.14 1.14 1.16 1.14 1.16 1.13 1.14 1.13 1.10 1.16
MOD-E17 1.22 1.06 1.24 1.06 1.07 1.27 1.00 1.29 1.00 1.00 1.30 0.81 1.31 0.75 1.10 1.10 1.07 1.12
MOD-E18 1.23 1.12 1.08 1.05 1.11 1.32 1.16 1.12 0.84 0.92 1.47 1.01 1.28 0.71 0.88 1.09 0.88 1.30
MOD-E7 1.17 1.13 1.19 1.15 1.15 0.98 1.04 1.01 1.13 1.02 0.99 1.05 0.99 1.09 1.05 1.08 0.93 1.19
MOD-E14 1.18 1.03 1.21 1.03 1.03 1.16 1.00 1.22 1.00 1.00 1.20 0.80 1.24 0.75 1.07 1.06 1.02 1.11
MOD-E13 0.85 1.02 0.82 1.08 1.03 0.84 1.25 0.81 1.41 1.28 0.97 1.11 0.93 1.17 1.16 1.05 0.87 1.22
MOD-E16 1.11 1.04 1.06 1.16 1.12 1.00 1.00 1.00 1.14 1.05 1.04 0.80 1.05 0.85 1.15 1.04 1.01 1.07
MOD-E12 1.00 1.14 1.04 1.14 1.13 0.88 1.00 0.89 1.07 1.09 0.99 0.97 0.99 1.01 0.96 1.02 0.88 1.16
MOD-E33 0.94 1.03 0.91 1.07 1.03 0.90 1.10 0.82 1.14 1.12 0.93 1.02 0.88 1.03 1.07 1.00 0.90 1.09
MOD-E29 1.00 0.91 1.03 0.87 0.92 1.14 1.00 1.14 1.00 1.00 1.10 0.81 1.10 0.78 0.94 0.98 0.92 1.03
MOD-E45 0.94 1.09 0.94 1.09 0.93 0.87 1.13 0.87 1.22 0.93 0.82 0.98 0.80 0.98 0.86 0.96 0.88 1.08
MOD-E1 0.91 0.85 0.92 0.84 0.86 0.76 0.72 0.78 0.72 0.72 0.82 0.82 0.85 0.83 0.86 0.82 0.77 0.93
MOD-E26 0.85 0.79 0.86 0.83 0.78 0.62 0.50 0.64 0.72 0.55 0.80 0.65 0.82 0.80 0.76 0.73 0.55 0.92
MOD-E15 0.45 0.86 0.44 0.85 0.58 0.35 0.96 0.35 0.98 0.67 0.49 0.85 0.49 0.82 0.77 0.66 0.52 0.88
MOD-E9 0.60 0.71 0.59 0.75 0.73 0.48 0.49 0.47 0.58 0.56 0.68 0.57 0.68 0.67 0.60 0.61 0.49 0.80
MOD-E38 0.45 0.52 0.42 0.61 0.56 0.50 0.64 0.50 0.75 0.63 0.62 0.62 0.58 0.73 0.66 0.59 0.47 0.89
MOD-E23 0.75 0.44 0.79 0.44 0.44 0.75 0.30 0.80 0.53 0.30 0.80 0.27 0.86 0.34 0.57 0.56 0.43 0.69
MOD-E8 0.51 0.41 0.51 0.35 0.48 0.62 0.60 0.59 0.24 0.55 0.60 0.44 0.56 0.24 0.40 0.47 0.18 0.67
MOD-E2 0.51 0.42 0.51 0.34 0.48 0.63 0.59 0.60 0.23 0.54 0.61 0.45 0.56 0.24 0.40 0.47 0.17 0.67
MOD-E24 0.46 0.45 0.45 0.48 0.46 0.44 0.44 0.43 0.55 0.47 0.45 0.49 0.44 0.57 0.51 0.47 0.43 0.58
MOD-E22 0.44 0.23 0.54 0.32 0.24 0.31 0.11 0.42 0.37 0.16 0.46 0.09 0.58 0.25 0.40 0.33 0.17 0.52
MOD-E32 0.38 0.31 0.49 0.42 0.32 0.04 0.14 0.36 0.45 0.18 0.29 0.15 0.53 0.40 0.39 0.32 0.18 0.57
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Table B2. Mean of Total Point and Final Scores of Landsat TSS models across different water classes as derived from different sediment types, backscattering ratios
and Solar Zenith Angles. The top five and bottom five scores from each water types and the final scores are in bold (top) and bold italics (bottom).

MODEL
Mean Total Score

from Sediment
Mean Total Score from

Backscattering Ratio (bb/b)
Mean Total Score from Solar

Zenith Angles Final
Score

Error
Final Score

I II III IV V I II III IV V I II III IV V Lower Bound Upper Bound

LAN-E3 1.66 1.69 1.67 1.69 1.70 1.85 1.81 1.86 1.82 1.84 1.79 1.61 1.74 1.61 1.64 1.73 1.60 1.77
LAN-A4 1.54 1.63 1.54 1.63 1.64 1.62 1.69 1.64 1.71 1.67 1.59 1.50 1.56 1.48 1.50 1.60 1.46 1.69
LAN-E9 1.28 1.38 1.24 1.36 1.39 1.74 1.94 1.65 1.97 1.98 1.47 1.54 1.39 1.55 1.62 1.57 1.47 1.64
LAN-A5 1.38 1.51 1.39 1.52 1.43 1.52 1.60 1.53 1.59 1.49 1.52 1.54 1.52 1.52 1.52 1.51 1.44 1.59
LAN-A1 1.33 1.53 1.34 1.58 1.45 1.54 1.69 1.46 1.80 1.63 1.52 1.27 1.48 1.33 1.59 1.50 1.43 1.56
LAN-E14 1.47 1.32 1.46 1.33 1.45 1.76 1.37 1.78 1.42 1.56 1.75 1.09 1.74 1.12 1.56 1.48 1.35 1.60
LAN-E20 1.56 1.57 1.53 1.61 1.60 1.52 1.45 1.52 1.48 1.48 1.54 1.17 1.51 1.16 1.49 1.48 1.37 1.59
LAN-E4 1.53 1.42 1.42 1.33 1.58 1.41 1.54 1.46 0.91 1.45 1.51 1.21 1.46 0.68 1.50 1.36 1.23 1.48
LAN-E1 1.36 1.36 1.36 1.36 1.36 1.37 1.34 1.36 1.35 1.35 1.29 1.33 1.29 1.32 1.30 1.34 1.28 1.40
LAN-E8 1.31 1.35 1.32 1.35 1.35 1.35 1.36 1.36 1.41 1.36 1.29 1.26 1.27 1.28 1.28 1.33 1.18 1.42
LAN-E13 1.36 1.39 1.38 1.35 1.37 1.30 1.28 1.35 1.27 1.30 1.35 1.20 1.35 1.12 1.35 1.31 1.28 1.37
LAN-E2 1.33 1.33 1.32 1.34 1.33 1.34 1.30 1.33 1.32 1.30 1.16 1.26 1.21 1.26 1.23 1.29 1.27 1.35
LAN-A2 1.18 1.08 1.19 1.11 1.12 1.38 1.04 1.43 1.20 1.23 1.42 1.08 1.41 1.16 1.26 1.22 1.13 1.38
LAN-E21 1.16 1.11 1.20 1.10 1.11 1.28 1.13 1.43 1.01 1.08 1.25 1.16 1.40 1.05 1.15 1.17 1.07 1.24
LAN-E7 1.11 0.93 1.09 0.93 0.85 1.38 1.04 1.39 1.09 0.89 1.47 0.79 1.46 0.74 0.91 1.07 0.83 1.31
LAN-E17 1.09 1.04 1.10 1.08 1.09 1.00 0.99 1.01 1.02 1.00 0.89 0.97 0.89 0.97 0.94 1.01 0.98 1.03
LAN-E12 1.13 1.02 0.96 1.12 1.24 1.09 0.74 1.11 0.61 1.05 1.25 0.71 1.19 0.50 0.75 0.96 0.73 1.20
LAN-E15 0.98 0.91 0.97 0.99 0.97 1.04 0.92 1.02 0.97 0.99 1.06 0.71 1.09 0.69 0.99 0.95 0.83 1.04
LAN-E5 0.97 0.95 0.95 0.99 0.99 0.94 0.88 0.90 0.89 0.96 0.97 0.70 0.94 0.72 1.03 0.92 0.76 1.05
LAN-A3 0.93 0.93 0.90 0.93 0.89 0.92 0.85 0.88 0.66 0.61 0.92 0.91 0.90 0.72 0.69 0.84 0.68 1.02
LAN-E19 0.66 0.67 0.67 0.69 0.64 0.64 0.73 0.80 0.87 0.76 0.60 0.65 0.66 0.70 0.67 0.69 0.45 1.07
LAN-E6 0.59 0.68 0.57 0.73 0.66 0.61 0.61 0.56 0.76 0.63 0.68 0.58 0.62 0.69 0.65 0.64 0.53 0.81
LAN-E10 0.42 0.45 0.39 0.45 0.45 0.65 0.59 0.61 0.65 0.48 0.66 0.44 0.60 0.44 0.36 0.51 0.28 0.78
LAN-E11 0.40 0.46 0.40 0.48 0.41 0.45 0.37 0.46 0.52 0.38 0.42 0.30 0.40 0.36 0.27 0.41 0.23 0.67
LAN-E22 0.99 0.84 1.02 0.67 0.75 0.56 0.00 0.19 0.00 0.00 0.47 0.05 0.34 0.00 0.00 0.39 0.31 0.51
LAN-E16 0.29 0.20 0.30 0.30 0.31 0.43 0.30 0.43 0.42 0.45 0.36 0.27 0.41 0.32 0.44 0.35 0.16 0.62
LAN-E18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Appendix C

The statistical measures used in assessing the accuracy of the results between modeled and the
true value are as follow:

MARE =

n
∑

i=1
|(xi − yi) /yi|

n
× 100% (C1)

where n is the total number of samples, xi is the predicted value and yi is the true value.
The Absolute Relative Error that was used to gauge the tolerance of each TSS model is defined

as follows:

ARE =
|x− y|

x
× 100% (C2)

where x is the TSS MARE results from the HydroLight validation and y is the MARE result from the
TSS distribution generated from the 1000 data points in the Gaussian distribution of errors for 10%,
20% and 50% Rrs uncertainty.
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S1. Scatter Plot of MODIS TSS Models for CLASS-I Water 

 

Figure S1.1. Scatter plot of MODIS TSS models in CLASS-I water for brown earth sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S1.2. Scatter plot of MODIS TSS models in CLASS-I water for bukata sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S1.3. Scatter plot of MODIS TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S1.4. Scatter plot of MODIS TSS models in CLASS-I water for red clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S1.5. Scatter plot of MODIS TSS models in CLASS-I water for yellow clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S1.6. Scatter plot of MODIS TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.001, solar zenith angle of 30°. 
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Figure S1.7. Scatter plot of MODIS TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.01, solar zenith angle of 30°. 
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Figure S1.8. Scatter plot of MODIS TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.05, solar zenith angle of 30°. 
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Figure S1.9. Scatter plot of MODIS TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.1, solar zenith angle of 30°. 
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Figure S1.10. Scatter plot of MODIS TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 15°. 
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Figure S1.11. Scatter plot of MODIS TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 45°. 
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Figure S1.12. Scatter plot of MODIS TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 60°. 
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Supplementary Materials S2. Scatter Plot of MODIS TSS Models for CLASS-II Water  

Figure S2.1. Scatter plot of MODIS TSS models in CLASS-II water for brown earth sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S2.2. Scatter plot of MODIS TSS models in CLASS-II water for bukata sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S2.3. Scatter plot of MODIS TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S2.4. Scatter plot of MODIS TSS models in CLASS-II water for red clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S2.5. Scatter plot of MODIS TSS models in CLASS-II water for yellow clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 

 
 



Remote Sens. 2016, 8, 810 S18 of S151 

 

Figure S2.6 Scatter plot of MODIS TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.001, solar zenith angle of 30°. 
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Figure S2.7. Scatter plot of MODIS TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.01, solar zenith angle of 30°. 
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Figure S2.8. Scatter plot of MODIS TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.05, solar zenith angle of 30°. 
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Figure S2.9. Scatter plot of MODIS TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.1, solar zenith angle of 30°. 
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Figure S2.10. Scatter plot of MODIS TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 15°. 
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Figure S2.11. Scatter plot of MODIS TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 45°. 
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Figure S2.12. Scatter plot of MODIS TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 60°. 
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Supplementary Materials S3. Scatter Plot of MODIS TSS Models for CLASS-III Water 

 

Figure S3.1. Scatter plot of MODIS TSS models in CLASS-III water for brown earth sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 

 



Remote Sens. 2016, 8, 810 S26 of S151 

 

 

Figure S3.2. Scatter plot of MODIS TSS models in CLASS-III water for bukata sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S3.3. Scatter plot of MODIS TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S3.4. Scatter plot of MODIS TSS models in CLASS-III water for red clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S3.5. Scatter plot of MODIS TSS models in CLASS-III water for yellow clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S3.6. Scatter plot of MODIS TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.001, solar zenith angle of 30°. 
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Figure S3.7. Scatter plot of MODIS TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.01, solar zenith angle of 30°. 
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Figure S3.8. Scatter plot of MODIS TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.05, solar zenith angle of 30°. 
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Figure S3.9. Scatter plot of MODIS TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.1, solar zenith angle of 30°. 
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Figure S3.10. Scatter plot of MODIS TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 15°. 
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Figure S3.11. Scatter plot of MODIS TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 45°. 
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Figure S3.12. Scatter plot of MODIS TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 60°. 
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Supplementary Materials S4. Scatter Plot of MODIS TSS Models for CLASS-IV Water 

 

Figure S4.1. Scatter plot of MODIS TSS models in CLASS-IV water for brown earth sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S4.2. Scatter plot of MODIS TSS models in CLASS-IV water for bukata sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S4.3. Scatter plot of MODIS TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 

 



Remote Sens. 2016, 8, 810 S40 of S151 

 

 

Figure S4.4. Scatter plot of MODIS TSS models in CLASS-IV water for red clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S4.5. Scatter plot of MODIS TSS models in CLASS-IV water for yellow clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S4.6. Scatter plot of MODIS TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.001, solar zenith angle of 30°. 
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Figure S4.7. Scatter plot of MODIS TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.01, solar zenith angle of 30°. 
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Figure S4.8. Scatter plot of MODIS TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.05, solar zenith angle of 30°. 
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Figure S4.9. Scatter plot of MODIS TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.1, solar zenith angle of 30°. 
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Figure S4.10. Scatter plot of MODIS TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 15°. 
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Figure S4.11. Scatter plot of MODIS TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 45°. 
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Figure S4.12. Scatter plot of MODIS TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 60°. 
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Supplementary Materials S5. Scatter Plot of MODIS TSS Models for CLASS-V Water 

 

Figure S5.1. Scatter plot of MODIS TSS models in CLASS-V water for brown earth sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S5.2. Scatter plot of MODIS TSS models in CLASS-V water for bukata sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S5.3. Scatter plot of MODIS TSS models in CLASS-V water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S5.4. Scatter plot of MODIS TSS models in CLASS-V water for red clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S5.5. Scatter plot of MODIS TSS models in CLASS-V water for yellow clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S5.6. Scatter plot of MODIS TSS models in CLASS-V water for calcareous sand sediment, bb/b ratio of 0.001, solar zenith angle of 30°. 
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Figure S5.7. Scatter plot of MODIS TSS models in CLASS-V water for calcareous sand sediment, bb/b ratio of 0.01, solar zenith angle of 30°. 

 
 



Remote Sens. 2016, 8, 810 S56 of S151 

 

 

Figure S5.8. Scatter plot of MODIS TSS models in CLASS-V water for calcareous sand sediment, bb/b ratio of 0.05, solar zenith angle of 30°. 
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Figure S5.9. Scatter plot of MODIS TSS models in CLASS-V water for calcareous sand sediment, bb/b ratio of 0.1, solar zenith angle of 30°. 
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Figure S5.10. Scatter plot of MODIS TSS models in CLASS-V water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 15°. 
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Figure S5.11. Scatter plot of MODIS TSS models in CLASS-V water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 45°. 
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Figure S5.12. Scatter plot of MODIS TSS models in CLASS-5V water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 60°. 

 
  



Remote Sens. 2016, 8, 810 S61 of S151 

 

Supplementary Materials S6. Scatter Plot of LANDSAT TSS Models for CLASS-I Water 

 

Figure S6.1. Scatter plot of LANDSAT TSS models in CLASS-I water for brown earth sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S6.2. Scatter plot of LANDSAT TSS models in CLASS-I water for bukata sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S6.3. Scatter plot of LANDSAT TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S6.4. Scatter plot of LANDSAT TSS models in CLASS-I water for red clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S6.5. Scatter plot of LANDSAT TSS models in CLASS-I water for yellow clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S6.6. Scatter plot of LANDSAT TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.001, solar zenith angle of 30°. 
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Figure S6.7. Scatter plot of LANDSAT TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.01, solar zenith angle of 30°. 
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Figure S6.8. Scatter plot of LANDSAT TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.05, solar zenith angle of 30°. 
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Figure S6.9. Scatter plot of LANDSAT TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.1, solar zenith angle of 30°. 
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Figure S6.10. Scatter plot of LANDSAT TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 15°. 
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Figure S6.11. Scatter plot of LANDSAT TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 45°. 
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Figure S6.12. Scatter plot of LANDSAT TSS models in CLASS-I water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 60°. 
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Supplementary Materials S7. Scatter Plot of LANDSAT TSS Models for CLASS-II Water 

 

Figure S7.1. Scatter plot of LANDSAT TSS models in CLASS-II water for brown earth sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S7.2. Scatter plot of LANDSAT TSS models in CLASS-II water for bukata sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S7.3. Scatter plot of LANDSAT TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S7.4. Scatter plot of LANDSAT TSS models in CLASS-II water for red clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S7.5. Scatter plot of LANDSAT TSS models in CLASS-II water for yellow clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S7.6. Scatter plot of LANDSAT TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.001, solar zenith angle of 30°. 
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Figure S7.7. Scatter plot of LANDSAT TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.01, solar zenith angle of 30°. 
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Figure S7.8. Scatter plot of LANDSAT TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.05, solar zenith angle of 30°. 
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Figure S7.9. Scatter plot of LANDSAT TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.1, solar zenith angle of 30°. 
 



Remote Sens. 2016, 8, 810 S82 of S151 

 

 

Figure S7.10. Scatter plot of LANDSAT TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 15°. 
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Figure S7.11. Scatter plot of LANDSAT TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 45°. 
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Figure S7.12. Scatter plot of LANDSAT TSS models in CLASS-II water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 60°. 
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Supplementary Materials S8. Scatter Plot of LANDSAT TSS Models for CLASS-III Water 

 

Figure S8.1. Scatter plot of LANDSAT TSS models in CLASS-III water for brown earth sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S8.2. Scatter plot of LANDSAT TSS models in CLASS-III water for bukata sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S8.3. Scatter plot of LANDSAT TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S8.4. Scatter plot of LANDSAT TSS models in CLASS-III water for red clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S8.5. Scatter plot of LANDSAT TSS models in CLASS-III water for yellow clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S8.6. Scatter plot of LANDSAT TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.001, solar zenith angle of 30°. 
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Figure S8.7. Scatter plot of LANDSAT TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.01, solar zenith angle of 30°. 
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Figure S8.8. Scatter plot of LANDSAT TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.05, solar zenith angle of 30°. 
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Figure S8.9. Scatter plot of LANDSAT TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.1, solar zenith angle of 30°. 
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Figure S8.10. Scatter plot of LANDSAT TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 15°. 
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Figure S8.11. Scatter plot of LANDSAT TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 45°. 
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Figure S8.12. Scatter plot of LANDSAT TSS models in CLASS-III water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 60°. 
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Supplementary Materials S9. Scatter Plot of LANDSAT TSS Models for CLASS-IV Water 

Figure S9.1. Scatter plot of LANDSAT TSS models in CLASS-IV water for brown earth sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 

 
 



Remote Sens. 2016, 8, 810 S98 of S151 

 

 

Figure S9.2. Scatter plot of LANDSAT TSS models in CLASS-IV water for bukata sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S9.3. Scatter plot of LANDSAT TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S9.4. Scatter plot of LANDSAT TSS models in CLASS-IV water for red clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S9.5. Scatter plot of LANDSAT TSS models in CLASS-IV water for yellow clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S9.6. Scatter plot of LANDSAT TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.001, solar zenith angle of 30°. 
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Figure S9.7. Scatter plot of LANDSAT TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.01, solar zenith angle of 30°. 
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Figure S9.8. Scatter plot of LANDSAT TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.05, solar zenith angle of 30°. 
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Figure S9.9. Scatter plot of LANDSAT TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.1, solar zenith angle of 30°. 
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Figure S9.10. Scatter plot of LANDSAT TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 15°. 
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Figure S9.11. Scatter plot of LANDSAT TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 45°. 
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Figure S9.12. Scatter plot of LANDSAT TSS models in CLASS-IV water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 60°. 
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Supplementary Materials S10. Scatter Plot of LANDSAT TSS Models for CLASS-V Water 

 

Figure S10.1. Scatter plot of LANDSAT TSS models in CLASS-V water for brown earth sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S10.2. Scatter plot of LANDSAT TSS models in CLASS-V water for bukata sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S10.3. Scatter plot of LANDSAT TSS models in CLASS-V water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S10.4. Scatter plot of LANDSAT TSS models in CLASS-V water for red clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S10.5. Scatter plot of LANDSAT TSS models in CLASS-V water for yellow clay sediment, bb/b ratio of 0.018, solar zenith angle of 30°. 
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Figure S10.6. Scatter plot of LANDSAT TSS models in CLASS-V water for calcareous sand sediment, bb/b ratio of 0.001, solar zenith angle of 30°. 
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Figure S10.7. Scatter plot of LANDSAT TSS models in CLASS-V water for calcareous sand sediment, bb/b ratio of 0.01, solar zenith angle of 30°. 
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Figure S10.8. Scatter plot of LANDSAT TSS models in CLASS-V water for calcareous sand sediment, bb/b ratio of 0.05, solar zenith angle of 30°. 
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Figure S10.9. Scatter plot of LANDSAT TSS models in CLASS-V water for calcareous sand sediment, bb/b ratio of 0.1, solar zenith angle of 30°. 
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Figure S10.10. Scatter plot of LANDSAT TSS models in CLASS-V water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 15°. 
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Figure S10.11. Scatter plot of LANDSAT TSS models in CLASS-V water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 45°. 
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Figure S10.12. Scatter plot of LANDSAT TSS models in CLASS-V water for calcareous sand sediment, bb/b ratio of 0.018, solar zenith angle of 60°. 
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S11: This supplementary section shows the scoring of each of the MODIS (MOD) and LANDSAT (LAN) TSS models for the individual water types, sediment 
types, backscattering ratios and solar zenith angles.  

 
Figure S11.1. Total scores for different sediments and the average scores across all five sediments in CLASS-I water. 
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Figure S11.2. Total scores for different sediments and the average scores across all five sediments in CLASS-II water.  
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Figure S11.3. Total scores for different sediments and the average scores across all five sediments in CLASS-III water.  
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Figure S11.4. Total scores for different sediments and the average scores across all five sediments in CLASS-IV water.  
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Figure S11.5. Total scores for different sediments and the average scores across all five sediments in CLASS-V water. 
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Figure S11.6. Total scores for different backscattering ratios and the average scores across all backscattering ratios in CLASS-I water for Calcareous sand. 
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Figure S11.7. Total scores for different backscattering ratios and the average scores across all backscattering ratios in CLASS-II water for Calcareous sand. 
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Figure S11.8. Total scores for different backscattering ratios and the average scores across all backscattering ratios in CLASS-III water for Calcareous sand. 
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Figure S11.9. Total scores for different backscattering ratios and the average scores across all backscattering ratios in CLASS-IV water for Calcareous sand. 
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Figure S11.10. Total scores for different backscattering ratios and the average scores across all backscattering ratios in CLASS-V water for Calcareous sand. 
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Figure S11.11. Total scores for different solar zenith angles and the average scores across all solar zenith angles in CLASS-I water for Calcareous sand. 
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Figure S11.12. Total scores for different solar zenith angles and the average scores across all solar zenith angles in CLASS-II water for Calcareous sand. 
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Figure S11.13. Total scores for different solar zenith angles and the average scores across all solar zenith angles in CLASS-III water for Calcareous sand. 
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Figure S11.14. Total scores for different solar zenith angles and the average scores across all solar zenith angles in CLASS-IV water for Calcareous sand. 
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Figure S11.15 Total scores for different solar zenith angles and the average scores across all solar zenith angles in CLASS-V water for Calcareous sand. 
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Figure S11.16. Total scores for different sediments and the average scores across all five sediments in CLASS-I water. 
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Figure S11.17. Total scores for different sediments and the average scores across all five sediments in CLASS-II water.  
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Figure S11.18. Total scores for different sediments and the average scores across all five sediments in CLASS-III water.  
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Figure S11.19. Total scores for different sediments and the average scores across all five sediments in CLASS-IV water.  
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Figure S11.20. Total scores for different sediments and the average scores across all five sediments in CLASS-V water.  



Remote Sens. 2016, 8, 810 S141 of S151 

 

 

Figure S11.21. Total scores for different backscattering ratios and the average scores across all backscattering ratios in CLASS-I water for Calcareous sand. 
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Figure S11.22. Total scores for different backscattering ratios and the average scores across all backscattering ratios in CLASS-II water for Calcareous sand. 
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Figure S11.23. Total scores for different backscattering ratios and the average scores across all backscattering ratios in CLASS-III water for Calcareous sand. 
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Figure S11.24. Total scores for different backscattering ratios and the average scores across all backscattering ratios in CLASS-IV water for Calcareous sand. 
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Figure S11.25. Total scores for different backscattering ratios and the average scores across all backscattering ratios in CLASS-V water for Calcareous sand. 
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Figure S11.26. Total scores for different solar zenith angles and the average scores across all solar zenith angles in CLASS-I water for Calcareous sand. 
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Figure S11.27. Total scores for different solar zenith angles and the average scores across all solar zenith angles in CLASS-II water for Calcareous sand. 
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Figure S11.28. Total scores for different solar zenith angles and the average scores across all solar zenith angles in CLASS-III water for Calcareous sand. 
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Figure S11.29. Total scores for different solar zenith angles and the average scores across all solar zenith angles in CLASS-IV water for Calcareous sand. 
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Figure S11.30. Total scores for different solar zenith angles and the average scores across all solar zenith angles in CLASS-V water for Calcareous sand. 
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Abstract
The impact of anthropogenic activities on coastal waters is a cause of concern because

such activities add to the total suspended sediment (TSS) budget of the coastal waters,

which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a

powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal

managers should be mindful that the satellite-derived TSS concentrations are dependent on

the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial

resolution and the limitations of specific TSS algorithms. In this study, we investigated the

impact of different spatial resolutions of satellite sensor on the quantification of TSS concen-

tration in coastal waters of northern Western Australia. We quantified the TSS product

derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8

Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250

m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quan-

tify the impact of spatial resolution on the derived TSS product in different turbidity condi-

tions. The results from the study show that in the waters of high turbidity and high spatial

variability, the high spatial resolution WV2 sensor reported TSS concentration as high as

160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concen-

tration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spa-

tially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68%

and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this

work are particularly relevant in the situation of compliance monitoring where operations

may be required to restrict TSS concentrations to a pre-defined limit.
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Introduction
Global coastal marine ecology is at ever increasing risk because of the increase of impacts due
to the demands of maritime trade, supporting population growth which necessitates land rec-
lamation, maintenance and capital dredging for ports, dredging for offshore resources, and
placing of sub-sea transport pipelines [1, 2]. The Australian economy is heavily dependent on
maritime links because of its geographical remoteness from other continents. One third of its
GDP is based on sea-borne trade, and the existing ports that support this high volume of ship-
ping traffic require constant maintenance dredging of existing shipping channels and frequent
large capital dredging projects [3]. The environmental effects of dredging on the costal marine
ecology are diverse, with dredging potentially resulting in either partial reduction or complete
loss of marine habitat through the physical removal of substratum biota from the sub-sea sur-
face and immediate burial due to sedimentation of the dredged materials [4]. Further, increase
in turbidity caused by dredging significantly attenuates the amount of light reaching the ben-
thic habitat for primary productivity [5±7]. The environmental cost of dredging and the need
for coastal development poses a challenge to environmental monitoring agencies, marine ecol-
ogists and coastal infrastructure developers who aim to find a balance between the two [4].

Coastal water quality monitoring of the effects of anthropogenic processes aims to provide
immediate and appropriate responses, but often requires continuous ground based monitor-
ing, which is typically resource intensive, to maintain and only provides information on lim-
ited specific geographical locations [8, 9]. The availability of satellite remote sensing platforms
has provided coastal managers with tools and capabilities to effectively monitor the coastal
environment at spatial and temporal scales previously unconceivable from the perspective of
traditional in situ based observation methods [10]. Coastal water quality in the form of water
turbidity or Total Suspended Sediment (TSS) concentration has been widely studied across
diverse geographical locations [11±20] by using a suite of remote sensing sensors such as,
Landsat [21±30], MEdium Resolution Imaging Spectrometer (MERIS) [7, 31±33], MODerate
resolution Imaging Spectroradiometer (MODIS) [16, 17, 20, 29, 34±44], and Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) [13, 45±49]. In addition to these most commonly used
and ªfree to groundº sensors, commercial high spatial resolution sensors such as Systèm Pour
l'Observation de la Terra (SPOT) [22, 50, 51], IKONOS [14] and WorldView-2 (WV2) [52]
are also employed to map the TSS.

The high spatial resolution commercial satellite sensors such as IKONOS, WV2, and
GeoEye-1 can provide data at spatial resolutions of approximately 0.5 mÐ4.0 m with temporal
resolutions of ~1±8 days [53]. The freely available remote sensing data of MODIS and MERIS
from the National Aeronautics and Space Administration can provide near-daily TSS esti-
mates at 250 mÐ300 m resolution and Landsat at 30 m but with a monitoring frequency of 16
days. Previous studies [1, 9, 54, 55] conducted in mapping TSS for water quality monitoring
have studied the spatial extent of suspended sediment plumes using one or more satellite sen-
sors and the common consensus is that the higher spatial resolution satellite sensors are able to
resolve finer details of suspended sediment plumes while the lower spatial resolution sensors
lose the finer details. However, only a few studies [54, 55] have been conducted to study the
impact of using different spatial resolution sensors in estimation of TSS in sediment plumes
where the water can be spatially variable in TSS concentration, even at sub-pixel level. Ody
et al. [54] showed that in the Gulf of Lion, France, the variability in the TSS concentration at
the turbid fronts and edges of the river plume was estimated to be around 7 mg L-1 and 10 mg
L-1 for 250 m and 1.0 km spatial resolution respectively. Further, the lower spatial resolution
sensor SERVI (Spinning Enhanced Visible and Infrared Imager) at 3.0 x 5 km2 was shown to
have TSS concentration variability due to different spatial resolution were as high as 20 mg L-1.
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The two studies [54, 55] indicated that the quantification of TSS concentrations using remote
sensing sensors are not only determined by the spatial resolution of the sensors, but also the
TSS variability of the region itself. Generally, the coarser spatial resolution sensors would pro-
duce higher TSS variability but the magnitude of TSS variability depended on the variability of
the TSS concentration of the sampled region.

In Western Australia, specifically the Pilbara region, the last decade and a half has seen sub-
stantial capital dredging projects with the total volume of dredged material in excess of ~70
million m3 and the recent Wheatstone gas field project is expected to add another ~45 million
m3 of dredge spoils to this total [56]. Compliance monitoring of large volume capital dredging
and/or frequent maintenance dredging is typically carried out using in situ data loggers that
measure a range of water quality parameters (TSS concentration, turbidity, light, and sedimen-
tation rate) [57]. In compliance monitoring of dredge operations in Western Australia, it is
required of dredging companies to perform environmental impact assessment studies using
hydrodynamic modelling of sediment plumes to identify zones of impact and trigger values
derived in relation to a water quality parameter and sensitivity to benthic communities [58].
For instance, in the Wheatstone gas field project, a zone of high impact (mortality rate> 50%)
was identified along the dredge channels and spoil area. The hydrodynamic model was used to
identify trigger values to prompt management responses, with thresholds of TSS> 25 mg L-1

for more than 14% of the time,>10 mg L-1 for more than 38% of the time, and> 5 mg L-1 for
more than 63% [58]. The TSS levels set to trigger a management response are monitored using
point measurement from the in situ data loggers, accepted as providing very accurate and reli-
able data. However, in situ data loggers cannot provide a synoptic view of TSS concentration
at reasonable costs over a large spatial extent, which has led environmental managers adopting
remote sensing technologies which can provide a synoptic view of plume dynamics and TSS
concentration at reasonable costs [59].

Despite the benefits of satellite remote sensing in water quality monitoring, the environ-
mental protection agencies tasked with monitoring the coastal water quality should be aware
of potential discrepancies in satellite derived TSS concentration as a result of different satellite
sensors and different spatial resolutions. The impact of significant spatial variability in the TSS
concentration can affect the results of the satellite derived TSS concentration used in monitor-
ing the water quality. In effect, the monitoring of dredging activity with different satellite-
based remote sensing sensors can produce different TSS concentrations even in the same spa-
tial region and depends on which satellite sensor is employed for the compliance monitoring.
Thus, this work was carried out to study the variability in TSS concentration at different spatial
resolutions in the waters of the Onslow region in northern Western Australia using WV2,
Landsat-8 OLI (Operational Land Imager) and MODIS-Aqua data. Specifically, first we tested
the capabilities of WV2, Landsat-8 OLI and MODIS-Aqua in resolving the spatial features in
areas of sediment plumes caused by dredging activities and river outflows. Second, we quanti-
fied the range of TSS concentration variability in the region of the sediment plumes and back-
ground waters by degrading the native spatial resolution of each sensor to coarser spatial
resolutions. Finally, we discuss the impact of using different spatial resolution sensors in moni-
toring of water quality as a result of findings from this study.

Materials andmethods
Study site and context
The study area, the coastal waters of Onslow, fall within the Pilbara region, in Western Austra-
lia (see Fig 1). The coastal area of Onslow generally experiences a mean annual temperature of
29.2ÊCand mean annual rainfall of 296 mm [60]. The study area is generally sheltered from
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the prevailing south-west winds and sea-swells from the Indian ocean by Barrow Island and
the shoals of Lowendal and Montebello Islands, however, the area experiences locally wind-
driven waves and seasonal tropical cyclones [61]. The topography of the coastal area generally
drives the ebb and flood tides easterly and westerly along the coastline with the flow occasion-
ally disturbed by the locally wind-driven currents. The tides around the shoreline are semi-
diurnal with the spring tide ranging from a mean high of 2.5 m to a mean low of 0.6 m [61].

The discovery of the Wheatstone gas field, located at the edge of the continental shelf 200
km off the coast of Onslow (located approximately 1390 km from Perth, Western Australia),
has led to the construction of offshore platforms and onshore gas processing plants [61]. The
turbidity of the coastal waters of Onslow was previously only affected by natural processes,
including seasonal tropical cyclones and episodic river outflows from the Ashburton river
which can range the TSS concentration from 15 mg L-1 to 5000 mg L-1 (with higher TSS con-
centration closer to the river mouth) with river flow rates of 30 m3 s-1 to 250 m3 s-1 [62]. The
dredging activity in the near-shore waters of Onslow occurred fromMay 2013 to December
2015 with an estimated 45 million m3 of dredge spoil generated [63]. Such large volumes of
dredge spoil are expected to have immediate impact in the immediate area of the dredging and
also have some level of impact on the marine habitat in the vicinity of the dredging locations.

Field remote sensing reflectance and TSS measurements
As part of the Dredging Science Node project 2/3 [65] funded by theWestern Australian Marine
Science Institution three field campaigns were carried out in October 9th± 31th, 2013, June 7th±
21st, 2014 and July 3rd± 13th 2015 onboard RV Linnaeus operated by the Commonwealth

Fig 1. Study site. True color Landsat OLI image showing the locations of field sites in the waters off the coast of
Onslow, Western Australia. True color image of the study site is reprinted from Figure 1 in Dorji et al [64] under a
Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). The black
polygon added in Fig 1 represents the area where Worldview 2 data were captured on June 13th 2014. The
colored dots represent locations of in situ data with colors indicating the year of data acquisition.

https://doi.org/10.1371/journal.pone.0175042.g001
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Scientific and Industrial Research Organization and RV Solander operated by the Australian
Institute of Marine Science. The ship-based ªDynamic Above-water radiance (L) and irradiance
(E) Collectorº (DALEC) [66] was used to measure the remote sensing reflectance (Rrs, in sr-1)
and in situ water sampling methods were used in measuring TSS concentrations. A brief
description of the in situ Rrs measurements using the DALEC and sampling of TSS concentra-
tion are provided below. Further details of the Rrs and TSS concentration data used in this
study, including the data collection procedure and data quality control measures, are discussed
in depth in Dorji et al. [64].

DALEC and TSS data collection and analysis. The DALEC, developed by ªIn situ
Marine Opticsº, is an autonomous ship based hyperspectral upwelling radiance (Lu), sky radi-
ance (Lsky) and downwelling irradiance (Ed) collector which takes coincident measurements in
256 spectral bins in the 380 nm to 900 nm spectral range. The Lu, Lsky and Ed measurements
from the DALEC can be used to compute Rrs using an ad-hoc Rrs formulation fromMobley
[67] for a uniform sky condition and wind speed less than 5 m s-1, as presented in Eq (1).

RrsðlÞ ¼
LuðlÞ � 0:022 LskyðlÞ

EdðlÞ
ð1Þ

The quality of DALEC data were maintained at two stages. 1) During the data collection
stage, we positioned the DALEC instrument at an azimuth angle of ~135Êrelative to solar
direction while the viewing angle of the Lu and Lsky sensors were maintained at 40Êoff nadir
and zenith respectively to minimize the sun glint and instrument shading. 2) During the data
analysis stage, we visually inspected the Lu and Lsky spectra and removed any spectra that were
contaminated by sun glint. The remaining spectra free of sun glint were averaged within ± 3
min from TSS sample collection time to generate an average Rrs spectrum corresponding to
that TSS sample.

For in situ TSS concentration measurement, we collected a minimum of two 1-liter samples
of sea water at a depth of approximately 0.5 m to 1 m at each TSS sample location (see Fig 1).
The TSS samples were filtered using Whatman GF/F filters (47 mm diameter, nominal pore
size of 0.7 µm) pre-prepared in the laboratory by flushing the filters with 50 mL of deionized
water and drying in an oven at 60ÊCfor 24 hrs. The filtered TSS samples were flushed with 50
mL of deionized water to remote salt from the seawater, then dried in the oven at 60ÊCfor 24
hrs and repeatedly measured and dried until consistent measurements were obtained within
the tolerance limit of 0.001 mg L-1. After performing the quality checks of the in situ data there
were 48 (Rrs and TSS) match-up pairs that were selected to establish a TSS algorithm. The
range of TSS concentrations used in the algorithm development varied from a low of 2.5 mg L-
1 to a high of 69.9 mg L-1.

Satellite remote sensing data
Satellite data acquisition and atmospheric correction. The satellite data used in this

study comprise MODIS-Aqua, Landsat-8 OLI and WV2 acquired around the time when the
second field campaign was carried out in June 7th±21st 2014. Due to the temporal limitation of
the Landsat-8 OLI of 16 days we could not acquire data for all three satellites contemporane-
ously. However, we acquired three concurrent sets of Landsat OLI and MODIS-Aqua data for
May 23rd July 10th and July 26th 2014 that were free of clouds and sun glint. The MODIS-Aqua
andWV2 data were acquired for June 13th, 2014, which was when theWV2 image was requisi-
tioned over the study region. The spectral bands and the spatial resolutions used in mapping
the TSS concentrations were band 1 (620±670 nm) at 250 m, band 4 (640±670nm) at 30 m
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and the `redband' (630±690nm) at 2 m for MODIS-Aqua, Landsat-8 OLI and WV2
respectively.

For this study we used the top of the atmosphere radiance data fromMODIS-Aqua avail-
able from the NASA LAADS web (http://ladsweb.nascom.nasa.gov/) as geo-located Level 1B
data in all 36 spectral bands. All the MODIS-Aqua Level 1B data were atmospherically cor-
rected using the MUMM [49] atmospheric correction as implemented in SeaDAS (version
7.2) [68]. The MUMM atmospheric correction, based on the spatial homogeneity of water
leaving radiance and constant aerosol ratios in MODIS 748 nm and 869 nm bands [54], was
demonstrated to perform well in the waters over our study region [64].

Radiometrically and geometrically corrected Level 1T Landsat-8 OLI data were obtained
from USGS archives using the EarthExplorer (http://earthexplorer.usgs.gov/). The Level 1T
Landsat-8 OLI data were atmospherically corrected to marine remote sensing reflectance
using the ACOLITE software (available at https://odnature.naturalsciences.be/remsem/
software-and-data/acolite) [69]. Two atmospheric correction algorithms are available in ACO-
LITE, the NIR and SWIR algorithm: the NIR algorithm is based on the selection of the red
(655 nm) and NIR (865 nm) bands to account for the aerosol contributions, the SWIR algo-
rithm uses the SWIR1 (1608.5 nm) and SWIR2 (2200.5 nm) bands available on the Landsat-8
OLI sensor. For this study, we selected the SWIR algorithm because it is valid for turbid waters
[70], which is the case for our study site where in situ TSS concentration was measured as high
as 69.6 mg L-1 in the vicinity of dredging areas and it is likely higher in the area of the dredge
plumes [71]. Further, the SWIR algorithm was shown to be an improvement over the NIR
band based atmospheric correction algorithm [69] that was valid for only moderately turbid
waters [54, 70].

The WV2 image covered an area of 331 km2 over the study area (see Fig 1 for the spatial
extent in the study area and theWV2 image). TheWV2 data comprise spectral bands in the
blue (450±510 nm), green (510±580nm), red (630±690 nm) and NIR1 (770±895 nm) and are
supplied as ortho ready standard WV2 satellite image data at 2 m spatial resolution. The Sea-
DAS and ACCOLITE platforms were specifically designed and adapted to process, among oth-
ers, MODIS and Landsat-8 OLI satellite sensor data, but they are not designed to process WV2
data. A study by Martin et al. [72] demonstrated the success of 6S (Second Simulation of a Sat-
ellite Signal in the Solar Spectrum) radiative transfer code in the atmospheric correction of sat-
ellite data captured in turbid coastal waters. The 6S code predicts the satellite signals at the top
of atmosphere between 250±4000nm based on geometrical conditions, atmospheric models
for gaseous components, the aerosol model, spectral conditions, and ground reflectance [73].
Thus, we applied the 6S atmospheric correction method of Kotchenova et al. [74] and obtained
the marine surface reflectance using the following input parameters: 1) geometrical conditions
were obtained from the solar zenith angle, solar azimuth angle, satellite zenith angle, satellite
azimuth angle, image acquisition day and month that was supplied with the WV2 image, 2)
the atmospheric model was selected as the Tropical atmospheric model, 3) the aerosol model
was selected as the `Continental' aerosol model with visibility of 15 km, 4) The spectral band
used was equivalent to the red band of WV2 and ground reflectance was modeled as a homog-
enous ocean BRDF model with wind speed of 5 m s-1, wind azimuth of 220Ê,salinity of 35 psu
and pigment concentration of 0.5 mg/m3. The input parameters in 6S were selected to match
closely with the conditions over the study region.

Validation of atmospheric correction methods. For the in situ validation of the atmo-
spheric correction method, only MODIS-Aqua provided concurrent measurements to the
DALEC-measured Rrs. The MODIS-Aqua overpass time over the study region on July 13th

2014 was at 06:30 hrs (UTC) while in situ TSS and DALEC Rrs were collected between 02:00±
07:30 hrs (UTC). The WV2 and Landsat-8 OLI data were not concurrent with the DALEC-
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measured Rrs during any of the Landsat-8 OLI and WV2 overpass times in the study region,
thus no in situ validation is performed for Landsat-8 OLI and WV2-derived Rrs. The time dif-
ference between DALEC Rrs measurements and MODIS-Aqua overpasses used in the valida-
tion was constrained to ±90 min. As a validation of atmospheric correction for Landsat-8 OLI
and WV2-derived Rrs, an inter comparison of Rrs with reference to MODIS-Aqua was per-
formed for the WV2 and Landsat-8 OLI derived Rrs over the study site for selected locations
(see light cross marks in Fig 2a and 2c±2e) representing a range of TSS concentrations. An
inter satellite sensor comparison can show significantly different Rrs values over the same
region due to the time difference of data acquisition and the dynamic water conditions where

Fig 2. The atmospherically correctedRrs (red band) product. (a) and (b) WV2 and MODIS-Aqua on June 13th 2014; (c)-(e)
Landsat-8 OLI and (f)-(h) MODIS-Aqua on May 23rd, July 10th and July 26th 2014 respectively. The white cross mark on (a), (c)-(e)
are the locations of the central pixel of 2.5 km square used inRrs product validation. The black cross mark are locations
corresponding to Dredged Areas (DA and DA2), Spoil Ground (SG), Clean Area (CA), River Plume (RP) and Moderate Turbid Area
(MTA) in each image.

https://doi.org/10.1371/journal.pone.0175042.g002
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water masses can move and evolve rapidly [54], thus to minimize the effect of satellite data
acquisition time difference we used the aggregates of pixel values in a selection of square boxes
of 2.5 km in length that represented waters ranging from clear to highly turbid in the image.
The length of 2.5 km was chosen because the minimum size of the plumes in the area of study
were at least 5 km in length, and the intent was to incorporate pixels within the plumes which
are expected to display a small range in Rrs values. For the MODIS-Aqua andWV2-derived Rrs
comparison, we selected 12 square box regions after visually identifying the areas that ranged
in different turbidity from theWV2 image for June 13th, 2014 (see white cross marks for cen-
tral locations of each box in Fig 2a). For the MODIS-Aqua and Landsat-8 OLI derived Rrs
comparison, we selected 12 square boxes per image after visually identifying the areas repre-
senting a range of different turbidity levels using Landsat-8 OLI imagery for May 23rd, July
10th and July 26th, 2014 (see white cross marks in Fig 2c±2e).

Degrading the satellite spatial resolution. Quantification of the variability in TSS con-
centration derived from sensors with different spatial resolutions was assessed by spatially
degrading the satellite sensor's derived TSS products to coarser spatial resolutions than their
respective native resolutions of 250 m, 30 m and 2 m for MODIS-Aqua, Landsat-8 OLI and
WV2 data respectively. The degradation of the spatial resolution depended on the respective
sensor's native resolution, the MODIS-Aqua TSS data were degraded to 500±5000m at 500 m
intervals, the Landsat-8 OLI TSS data were degraded to 60±4800m at 60 m intervals, and the
WV2 TSS data were degraded to 4±5000m at 2 m intervals. The spatial resolution was
degraded using the aggregate of all available pixel values in a selected region. For example, if
MODIS-Aqua 250 m data were to be degraded to 1000 m spatial resolution then all pixels con-
fined within the 1000 m by 1000 m (equivalent to 4 × 4 250 m spatial grids) would be averaged.
The locations and size of each selected area were determined visually by assessment of the uni-
formity of TSS in the region and the spatial resolution of degradation. For each MODIS-Aqua
and Landsat-8 OLI TSS image we selected 5 locations, the 1) the center of the dredge area
(DA), 2) center of the spoil ground (SG), 3) moderately turbid but spatially uniform area
(MTA), 4) clean area (CA) and 5) center of the river plume (RP). For the WV2 TSS image, we
also selected 5 locations, but replaced the location of the river plume with the second dredge
area (DA2) because the area of the river plume was not covered by the WV2 image (see black
cross marks in Fig 2 for the locations).

In addition, the data to visually examine the spatial characteristic of the sediment plumes
were generated by spatially degrading the TSS product for all of the study regions from each
sensor's native spatial resolution. The high spatial resolution 2 mWV2 TSS product was
degraded to 30 m, 250 m, 500 m, and 1000 m, the spatial resolution of the 30 m Landsat-8 OLI
TSS product was degraded to 250 m, 500 m, and 1000 m, and the coarser 250 m spatial resolu-
tion of MODIS-Aqua was degraded to 500 m and 1000 m. For the examination of the plume
features we focused on the area where the plume was visually evident (see red box in Fig 2a, 2c,
and 2h) for the TSS product of June 13th 2014 for WV2, May 23rd for Landsat-8 OLI and July
10th 2014 for MODIS-Aqua.

Calibration and validation of Multi-Sensor TSS algorithm
The TSS algorithm used in this study is the Semi-Analytic Sediment Model (SASM) from
Dorji et al. [64] where the physical form of SASM is based on the principle of radiative transfer
and it has been shown that the SASM performs better in the study region compared with sim-
ple linear and exponential models. Further, SASM is based on a red spectral band which suits
our purpose because all three satellite sensors considered here have red bands which are
proven to be effective in mapping TSS concentrations in the turbid region where reflectance
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does not necessarily co-vary linearly with reflectance. To calibrate the SASM model, the
DALEC measured Rrs was convolved to the respective sensors band's spectral response func-
tions and then converted to equivalent sub-surface remote sensing reflectance (rrs). Then all
the 48 (rrs and TSS) match-up pairs were used in re-calibration of the general form of the
SASM in Equation (14) of Dorji et al. [64]. The recalibrated model was validated using the
method of Leave-one-out cross-validation (LOOCV) [75] where all but one (rrs and TSS)
match-up pairs were used in calibration and the remaining one was used in validation until all
the match-up pairs were exhausted. The SASM re-calibrated to the respective red bands of
MODIS-Aqua, Landsat-8 OLI and WV2 are presented below in Eqs (2), (3) and (4) for
MODIS-Aqua in band 1, Landsat-8 OLI in band 4 andWV2 in the red band respectively.
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1 � x

� �

1 � 0:69�
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� � ð2Þ
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p

2g2
, and rrs (λ) = rrs (band 1) for MODIS-Aqua, rrs (band 4) for Land-

sat-8 OLI and rrs (red band) for WV2, g1 = 0.084 and g2 = 0.17

Mapping of TSS concentration
The Rrs derived from the atmospherically corrected reflectance of MODIS-Aqua in band 1,
Landsat-8 OLI in band 4 andWV2 in the red band for all the corresponding dates of image
acquisition were used in mapping the TSS concentration. The respective satellite derived Rrs
were converted to rrs using Eq (5) [76] then, the resultant rrs was used in the respective satellite
sensor's TSS algorithm given by Eqs (2), (3) and (4) for MODIS-Aqua, Landsat-8 OLI and
WV2 respectively.

rrsðlÞ ¼
RrsðlÞ

ð0:52þ 1:7RrsðlÞÞ
ð5Þ

Accuracy assessment
The common accuracy assessment methods, Mean Absolute Relative Error (MARE), Absolute
Relative Error (ARE) and Root Mean Square Error (RMSE) employed in remote sensing by
numerous studies [77±79] were used in this study to compare model-derived and `true'Rrs
and TSS values. In this study we refer to `true'value as the in situmeasurements or MODIS-A-
qua derived Rrs or TSS values. We also considered the correlation coefficient (r) defined in Eq
(9), although r cannot be strictly used in assessing the accuracy between two models because a
high r value does not necessarily mean a better prediction because the systematic model error
can also lead to over and/or under prediction [79]. We used r to gauge the presence of positive
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correlation between the models. RMSE, as defined in Eq (8), is the most common accuracy
assessment used to indicate average error of a model. Because of its susceptibility to outliers we
resorted to using RMSE to evaluate in situ validation of TSS algorithms only, where in the in
situmodel validation the model-derived TSS concentration is not expected to deviate signifi-
cantly from the in situ TSS measurements. However, in the accuracy assessment of TSS con-
centration derived from the satellite images, the TSS concentration can be highly variable and
possibly include outliers, which can limit the use of RMSE accuracy assessment in such cases.
Thus, the MARE and ARE as defined in Eqs (6) and (7) respectively, were deemed more
appropriate for satellite image derived TSS comparison. Further, the MARE and ARE are scale
independent and provide errors in percentages, which better facilitates the comparative study
of TSS concentrations produced by different satellite sensors. Thus, accuracy assessment for
quantitative comparison of TSS concentration derived from different sensors was performed
using MARE and ARE. However, it should be noted that negative or zero, model-derived or
`true'values can result an unreliable accuracy estimates in MARE and ARE calculation. In this
study, in the atmospheric correction process of the satellite images, the Rrs values were tested
for negative or zero values to be flagged as `bad'pixels and removed from subsequent analysis.
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Xn
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n
� 100% ð6Þ

ARE ¼
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where n is the total number of samples, xi is the model-derived TSS and yi is the `true'TSS.

Results
Validation of TSS algorithms
The result from the LOOCV method used in calibration and validation of the TSS algorithms
in Eqs (2), (3) and (4) are presented in Table 1. Further, the corresponding TSS model curves
for MODIS-Aqua in band 1, Landsat-8 OLI in band 4 and WV2 in the red band are shown in
Fig 3. The results from all three sensor's TSS algorithms produce similar results in terms of
MARE, RMSE and r values. The similar results between all three TSS algorithm's validation

Table 1. Validation results for MODIS-Aqua, Landsat-8 OLI, andWV2 TSS algorithms.

SASMModel MARE (%) RMSE (mg L-1) r
Modis-Aqua 33.33 5.75 0.89

Landsat-8 OLI 33.36 5.73 0.89

WorldView 2 33.34 5.68 0.89

https://doi.org/10.1371/journal.pone.0175042.t001
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are expected because all three algorithms use the respective sensor's red band with slight varia-
tion in spectral response function of each sensor.

Multi-Sensor atmospheric correction validations
Validation of the atmospheric correction methods for the different satellite sensors involved
two methods: 1) in situ validation for MODIS-Aqua atmospheric correction methods and 2)
inter-sensor Rrs validation between MODIS-Aqua, WV2 and Landsat-8 OLI. In both the vali-
dation methods, type-II linear regression from [80] was used because type-I regression typi-
cally assumes the dependent (`true')variable is error free, but this is not the case even in in situ
measurements [81].

The validation result for in situ atmospheric correction for MODIS-Aqua using the
DALEC-derived Rrs is shown in Fig 4. The error bars on the data points in Fig 4 indicate the
minimum and maximum values of Rrs within 3 × 3 and 5 × 5 pixel extents. In Fig 4 we observe
that the majority of the data points were within the 1:1 line considering the error bars from Rrs
variability in a 5 by 5-pixel window. However, there are also a few data points whose error bars
do not overlap with the 1:1 line and resulted in ARE as high as 109.64% between the in situ
DALEC Rrs measurement and MODIS-Aqua derived Rrs. The overall MARE of all data points
was 34.82% with slope of 0.67, intercept of 0.0018 and R2 of 0.54 as obtained from Type-II
regression. Additional observation we can make from Fig 4 are that as the pixel window
increases from a 3 × 3 to a 5 × 5 pixel window, the upper and lower error bounds also increase,
showing that the water is highly variable in Rrs values. This spatial variability in Rrs is associated
with the spatial variability in TSS.

Fig 3. The TSSmodel curves for MODIS-Aqua (blue), Landsat-8 OLI (green) andWV2 (red). The in situ
data points are shown by filled circles with the same colour profile as respective TSS model curves. The data
for TSS < 10 mg L-1 and rrs < 0.025 sr-1 are also shown in the blow out version of the plot.

https://doi.org/10.1371/journal.pone.0175042.g003
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The result of the inter-sensor validation of the Rrs product is shown in Fig 5a and 5b. From
Fig 5a and 5b we observe that the inter-sensor Rrs product validation of MODIS-Aqua vs
Landsat-8 OLI (Fig 5a) with MARE of 44.85% showed a better result than MODIS-Aqua vs
WV2 (Fig 5b) with a MARE of 55.99%. In addition, the ARE results in Fig 5a were also better
with the smallest ARE and largest ARE of 0.15% and 158.11% while in Fig 5b the smallest ARE
and largest ARE were 1.20% and 332% respectively. Further, in Fig 5a the type-II linear regres-
sion indicates that there is high correlation, with R2 = 0.87, between MODIS-Aqua and Land-
sat-8 OLI derived Rrs, with most data points falling along the 1:1 line, considering the Rrs
variability within a 2.5 km width square box (indicated by error bars in Fig 5a and 5b with the
17.5 and 82.5 percentile Rrs values). The correlation between MODIS-Aqua andWV2, as
shown in Fig 5b, was lower, with R2 = 0.61 with some data points failing to fall within the 1:1
line even after considering the errors from Rrs variability in the 2.5 km square box. However,
the majority of the data points in both Fig 5a and 5b show that MODIS-derived Rrs are lower
than either WV2 or Landsat-8 OLI derived Rrs for Rrs> 0.005 sr-1.

Sediment plume features examination
Few selected regions within the study sites in Fig 1 (shown by red boxes in Fig 2a, 2c and 2h)
which are spatially degraded to lower spatial resolutions are shown in Fig 6a±6c for WV2,

Fig 4. In situ validation of DALEC-measuredRrs and MODIS-Aqua derivedRrs for match-up data within ± 90min from the
satellite overpass. The error bars indicate the maximum and minimum MODISRrs values in 3 × 3 and 5 × 5 pixel extents.

https://doi.org/10.1371/journal.pone.0175042.g004
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Landsat-8 OLI and MODIS-Aqua sensors respectively. Subsequent images from the top row to
bottom row in Fig 6a±6c are spatially degraded to a coarser spatial resolution. In Fig 6a, show-
ing WV2 at 2 m spatial resolution, we are able to visually identify even the fine spatial features
in the sediment plumes adjacent to the large turbidity features which are very evident. Similar
spatial features as those observed at 2 m spatial resolution are still evident in the degraded
lower spatial resolution of 30 m. As the spatial resolution is degraded to 250 m and 500 m the
fine spatial features which were evident at 2 m and 30 m spatial resolution are no longer visible,
but we can still identify the two large distinct plume regions (DA and DA2 in Fig 6a) which
are visible enough to be distinguished as two separate regions of plume when compared with
the surrounding areas in DA and DA2. In the lowest spatial resolution of 1000 m, we can no
longer clearly discern even the two distinct DA and DA2 plumes observed at the 250 m and
500 m spatial resolutions. The separate regions of DA and DA2 are fused together to appear as
one large region of turbid plume when compared with the surrounding background data. In
Fig 6b, showing Landsat-8 OLI data at 30 m spatial resolution, we can distinguish the fine fea-
tures of the river plume, but as the spatial resolution is degraded to 250 m, 500 m and 1000 m
only the larger boundaries of the sediment plumes remain visible as the finer features are
replaced by the coarser grids at degraded spatial resolutions. Similarly, in Fig 6c showing
MODIS-Aqua data, we can clearly observe the dredge plume in the 250 m and 500 m spatial
resolution images, but the 1000 m spatial resolution image loses the details that are observed at
the higher spatial resolutions.

Quantification of TSS in sediment plumes
Fig 7a and 7b show the histograms of TSS concentrations derived from pixels located within
the clean area (CA) which represents the background water to the turbid dredged area (DA)
for all the images at MODIS-Aqua and WV2 sensor's native spatial resolution as well as spa-
tially degraded resolutions respectively. The degraded resolutions encompass more pixels and
the histogram shows the average TSS value of each area, with the error bars indicating the
maximum and minimum TSS values of the native resolution pixels within each area. The
comparative results between MODIS-Aqua andWV2 for the June 13th 2014 show that

Fig 5. Inter-satelliteRrs product validation results. (a) 2014 MODIS-Aqua vs Landsat-8 OLIRrs product validation from May 23rd,
July 10th and July 26th 2014; (b) MODIS-Aqua vs WV2Rrs product validation forRrs from June 13th. The error bars indicate the 17.5
percentile (lower limit) and 82.5 percentile (upper limit) of pixel values from a 2.5 km width box for each respective satellite sensors
derivedRrs. Dashed lines indicate the 1: 1 relationship.

https://doi.org/10.1371/journal.pone.0175042.g005
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Fig 6. Spatially degraded images of the DredgeArea (DA) and River Plume (RP). Extracted from images
in Fig 2a, 2d and 2i corresponding to (a) WV2, (b) Landsat-8 OLI and (c) MODIS-Aqua.

https://doi.org/10.1371/journal.pone.0175042.g006
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MODIS-Aqua derived average TSS values are relatively lower thanWV2 derived average TSS
for the regions DA, RP, SG and MTA. At sensor native resolution (2 m for WV2 and 250 m
for MODIS-Aqua) the MODIS-Aqua derived TSS for the turbid regions (DA, SG and RP)
were ~8.5 times less thanWV2 derived TSS concentrations. In terms of average TSS derived at
different spatial resolutions for the WV2 image (Fig 7b) we observe that in the plume/turbid
areas (DA), the average TSS concentration decreased as the spatial resolution became coarser
and the MARE between average TSS derived from 2 m and 2000 m spatial resolution in DA
was 114.46%. Likewise, a similar trend was observed for the MODIS-Aqua images, with the
MARE between 250 m and 5000 m spatial resolutions of 30.80% for MODIS-Aqua.

The variability in TSS concentration in different regions is represented by error bars (mini-
mum and maximum TSS concentration in each spatial grid) in Fig 7a and 7b. The error bars
in Fig 7a and 7b show that for all regions considered, the range of TSS variability increases as
spatial resolution gets coarser and the area encompassed increases. In the region of the dredge
plume (DA) the TSS concentration ranged from a low of 2.3 mg L-1 to a high of 160 mg L-1 for
the WV2 image at the spatial resolution of 2000 m while for MODIS-Aqua, at a spatial resolu-
tion of 5000 m, by contrast only displayed TSS in the range of 1.4 mg L-1 to 6.6 mg L-1.

Fig 8a±8f show histograms of the TSS concentration derived using Landsat-8 OLI and
MODIS-Aqua data for May 23rd, July 10th and July 26th 2014 for regions DA, CA, MTA, RP
and SG at native and degraded spatial resolutions. For all three dates, the TSS concentration
derived using Landsat-8 OLI images were higher than the MODIS-Aqua for the turbid (DA,
SG and RP) and moderately turbid (MTA) regions while the MODIS-Aqua derived TSS was
higher than the Landsat-8 OLI for the clean area (CA). For the turbid regions (DA, RP and
SG) the ARE between MODIS-Aqua and Landsat-8 OLI derived TSS ranged from 2.3% to
304.68% with higher ARE at the higher spatial resolution for all Landsat-8 OLI and MODIS-A-
qua image pairs. For the regions of moderately turbid (MTA) and clean area (CA) the ARE in
TSS concentration ranged from 44.22% to 82.08% with a maximum of 4% variability in ARE
for all different spatial resolutions within any Landsat-8 OLI and MODIS-Aqua image pair.

In general, apart from the MODIS-Aqua image of the May 23rd 2014 (Fig 8d) all TSS
concentrations derived for turbid regions (DA, SG and RP) show general trends in which
the mean TSS concentrations of the coarser spatial resolution grid are lower than the mean
TSS concentrations derived at higher spatial resolution. Further, the variability in TSS

Fig 7. Average TSS concentration. (a) MODIS-Aqua and (b) WV2 at their respective native and degraded spatial resolutions,
averaged over the areas: dredge plume (DA and DA2), Spoil Ground (SG), River Plume (RP), Moderate Turbid Area (MTA) and
Clean Area (CA). The error bars indicate the minimum and maximum TSS concentrations in each spatial grid.

https://doi.org/10.1371/journal.pone.0175042.g007
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concentration as represented by minimum and maximum TSS concentrations in the spatial
grid increases as the spatial grids get coarser and cover a larger extent. The range of TSS con-
centration as derived by Landsat-8 OLI and MODIS-Aqua varied from 5.59 mg L-1 to 29.15
mg L-1 and 3.9 mg L-1 to 6.31 mg L-1 in the turbid regions (DA, SG and RP) respectively
while the TSS concentration ranged from 0.38 mg L-1 to 0.43 mg L-1 for MODIS-Aqua and
0.14 mg L-1 to 0.30 mg L-1 for Landsat-8 OLI in the background waters (CA).

Discussion
Data and methodological limitations
The results presented demonstrate the differences observed in remotely sensed TSS concentra-
tions for three different sensors and for varying spatial scales of monitoring. The remote sens-
ing instruments, WV2, MODIS-Aqua and Landsat-8 OLI considered in this study have their

Fig 8. Average TSS concentration. (a)Ð(c) Landsat-8 OLI and (d)Ð(f) MODIS-Aqua at their respective native and degraded
spatial resolutions in the dredge plume (DA), Spoil Ground (SG), River Plume (RP), Moderate Turbid Area (MTA) and Clean Area
(CA). The error bars indicate the minimum and maximum TSS concentrations in each spatial grid.

https://doi.org/10.1371/journal.pone.0175042.g008
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own radiometric characteristics and atmospheric correction methods that are best suited to
each individual sensor. Apart from the radiometric and atmospheric correction methodologies
considered for each sensor we also have to take into account the different image acquisition
times when attempting to compare the results of the different sensors. The miss-match
between the different sensor image acquisition times leads to the situation where the water
mass, or the feature of interest such as a sediment plume, may move and alter in spatial distri-
bution, thus the comparison of the Rrs was based on a spatial subset of pixels contained within
a square region of length 2.5 km, the average distance the surface current for June 13th 2014 in
the study region was estimated to move a water mass within the acquisition time differences
(P. Branson, personal communication, July 4th 2016). Further, the effect of pixel resolution
and the size of the spatial domain on the TSS product was studied by degrading the spatial res-
olution of the TSS products for each sensor to coarser and larger grids.

The inter-sensor TSS algorithms considered in this study were all calibrated using the same
in situ TSS and Rrs measurements in the red bands of the respective sensors and the in situ vali-
dation result of the TSS algorithms for all three satellite sensors were within MARE of 33.33%
to 33.36%. Fig 3 shows the close similarity in the algorithm curves for each sensor, with a maxi-
mum relative difference of ~10% between TSS values occurring at higher Rrs. However, com-
parison between TSS algorithm curves should take into account the differences in the spectral
response of each sensor, thus the Rrs value for the same body of water would be expected to be
slightly different for each sensor, as indicated by the horizontal displacement of the individual
data points in Fig 3. Nonetheless, the value of 10% is a reasonable estimate of the upper limit of
the differences in TSS to be expected simply due to differences between sensor algorithms. The
use of different atmospheric correction methods for different sensors can cause discrepancies
in the final derived TSS products, thus it is vital to account for such discrepancies in atmo-
spheric correction methods. The Rrs results for the MODIS-Aqua which were validated using
the in situ Rrs data showed that MODIS-Aqua had MARE of 33.82%. The WV2 and Landsat-8
OLI atmospheric correction results which were ªvalidatedº against the MODIS-Aqua Rrs data
had MARE of 55.99% for WV2 vs. MODIS-Aqua, and 44.85% for MODIS-Aqua vs. Landsat-8
OLI. The high MARE values of inter sensor validation may be expected because of the acquisi-
tion time differences between satellite sensor data that were in excess of 3 hrs between MODI-
S-Aqua and WV2, and 3.75 hrs between MODIS-Aqua and Landsat-8 OLI. In areas of the
turbid dredged plumes (DA and DA2 in Fig 2a) the MODIS-Aqua Rrs derived using the
MUMM atmospheric correction method is particularly low when compared with Rrs derived
fromWV2 using the 6S atmospheric correction method. The highest ARE were between the
Rrs derived from the MUMM and 6S atmospheric correction methods at 332% while the lowest
ARE of 1.2% were observed in the region of the background waters (CA in Fig 2a). The under-
estimation of Rrs by the MUMM atmospheric correction method could be because it was
designed for moderately turbid waters [69] and fails to retrieve Rrs correctly in highly turbid
waters of the dredge plumes. Similar under estimation of Rrs in the turbid region (DA in Fig
2c±2h) by the MUMM atmospheric correction method applied to the MODIS-Aqua image
was observed when compared with Rrs derived from the SWIR atmospheric correction applied
to the Landsat-8 OLI which was adapted for the turbid waters [70].

General observation and recommendations
The effect of different spatial resolutions of the satellite sensors on identifying and mapping
the fine features in the dredge plumes are evident from the results. The higher spatial resolu-
tion satellite sensors, no doubt, have the benefit of identifying even the fine features in the sedi-
ment plumes. For the size and scale of images displayed, the 30 m Landsat-8 OLI and 2 m
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WV2 TSS products shows similarly fine features, but as the spatial resolution is degraded to
larger pixel sizes the fine features are no longer visible, as seen in images with the spatial reso-
lution greater than 250 m (see Fig 6). The fine details observed with the high spatial resolutions
of WV2 at 2 m and Landsat-8 OLI and 30 m native spatial resolution makes these two sensors
capable of resolving fine spatial details in the surface turbidity features and shows the capability
of their application in spatial features/extent mapping of the sediment plumes when compared
with MODIS-Aqua sensors. From the perspective of dredge plume monitoring for environ-
mental impact assessment or compliance, the finer details available in the higher resolution
satellite data provide better resolution of the spatial extent of dredge plumes, and this in turn
translates to a higher confidence in the product. For instance, the extent of the dredge plume
in the lateral direction when measured with the high resolution WV2 image was ~6 km, while
the MODIS-Aqua derived measurement was ~10 km. However, marine and environmental
protection agencies should carefully weigh the cost and benefit of using different spatial resolu-
tion sensors. Both the WV2 and Landsat-8 OLI data are able to identify the fine features of the
dredge plume, but users should be mindful that the WV2 data are not freely accessible, as is
Landsat-8 OLI. Further, if the requirement of the agencies were just to map the extent of
dredge plume then MODIS 250 m spatial resolution shows similar capability in mapping the
larger TSS spatial features, but not the fine features and details as seen in the high resolution
WV2 and Landsat-8 OLI images.

The general trend observed in quantified TSS concentration (Figs 7 and 8) is that as the spa-
tial resolution gets coarser and the spatial extent increases the mean TSS concentration
decreases for all three different sensors for turbid regions (DA, SG and RP) while the mean
TSS concentrations for CA and MTA remain relatively uniform. Depending on the spatial res-
olution, the mean TSS concentration results for different spatial resolutions by the same satel-
lite sensors are different and it is shown to decrease as spatial resolution gets coarser for turbid
regions. The decrease in TSS concentration with coarser spatial resolutions are observed
because of the inclusion of background and lower turbid waters in averaging as the spatial
grids get larger. In monitoring of TSS concentration in turbid regions it is important for envi-
ronmental agencies to be mindful of the result from this study where it shows the effect of the
coarser spatial resolution sensors in inclusion of background and lower TSS concentration
neighboring pixels producing a lower average TSS concentration than the TSS concentration
of the sediment plume over a small spatial extent, particularly when the size of the sediment
plume is smaller than the spatial resolution of the satellite sensor. However, our results did not
show that such an effect is observed in regions where the turbidity is uniformly distributed
over a relatively large spatial extent.

The quantification of TSS concentrations variability results (see S1 Text for details) show
that in the background, CA (see S3 Fig), spatially uniform and moderately turbid waters, MTA
(see S2 Fig), the TSS variability remains similar across different spatial resolutions for each sen-
sor. The TSS variability across different spatial resolutions (250 m± 2000 m) for CA and MTA
were mostly below ~5% from the mean TSS concentrations of the respective region, with the
exception of Landsat-8 OLI in MTA which had TSS variability of 10.39%. The low TSS varia-
tion is expected in the CA and MTA regions because the CA, which is approximately 30 km
from the dredge region, is expected to remain undisturbed by the dredging activities and has a
natural background level of TSS concentration without disturbance from anthropogenic pro-
cesses. Further, the MTA region, which has spatially uniform TSS concentration, is expected
to show minimum variance when spatially degraded to represent coarser spatial resolution.
However, in the turbid regions (DA, SG and RP) the TSS variability was higher, with 16.96%,
54.09%, and 12.05% for MODIS-Aqua, Landsat-8 OLI and WV2 respectively. The higher TSS
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variability in the turbid regions, the regions of dredge and river plumes, can be associated with
higher TSS gradient in each region. The mean TSS concentration derived by different satellite
sensors was also different for each sensor.

The MODIS-Aqua sensor produced mean TSS concentrations of 12.67±2.15 mg L-1,
1.89±0.04 mg L-1, and 0.51±0.02 mg L-1 for the DA, MTA and CA regions respectively. Like-
wise, for Landsat-8 OLI and WV2 sensors, the mean TSS concentrations in the DA, MTA and
CA regions were quantified to be 11.34±6.13 mg L-1, 1.61±0.07 mg L-1, and 0.16±0.02 mg L-1

for Landsat-8 OLI and 22.04.34±2.65 mg L-1, 3.85±0.19 mg L-1, and 1.84±0.06 mg L-1 for
WV2. Thus, in monitoring TSS concentration, it should be noted that the TSS variability
observed by the satellite sensors is not only associated with the different satellite sensor's spa-
tial resolution, but also the horizontal spatial distribution of TSS as well.

Conclusion
The aim of this study was to highlight the effect of the sensor spatial resolution on quantifica-
tion of TSS concentration in turbid sediment plumes. Results from this study show that dif-
ferent satellite sensors with different spatial resolutions can produce different TSS
concentrations, particularly in regions of spatially variable TSS. The WV2 sensor, with 2 m
spatial resolution, was shown to generate TSS concentrations as high as 160 mg L-1 in the
region of the dredge plumes while the highest TSS concentration generated by MODIS-Aqua
with 250 m spatial resolution was 23.6 mg L-1. Even for the same satellite sensor degraded to
different spatial resolutions, the TSS concentrations in the non-uniform turbid regions var-
ied by 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively
as the sensor resolution was degraded and the spatial extent increased. In the region of back-
ground water and uniformly turbid waters, the mean TSS concentration was observed to be
uniform as the sensor resolution was degraded and the spatial extent was increased. Thus, in
the context of TSS monitoring of the coastal waters, and particularly for environmental com-
pliance monitoring for dredge operations, users must be mindful of the fact that different
satellite sensors produce different TSS concentrations with higher spatial resolution satellite
sensors reporting higher TSS values. Also, higher spatial resolution sensors are able to resolve
fine turbidity features while lower spatial resolution sensors are only able to resolve the larger
spatial extent of the sediment plumes.
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S1 Fig. TSS concentration variability at different spatial resolution derived fromMODI-
S-Aqua, WV2 and Landsat-8 OLI in Dredge Area (DA).
(TIF)

S2 Fig. TSS concentration variability at different spatial resolution derived fromMODI-
S-Aqua, WV2 and Landsat-8 OLI in Moderate Turbid Area (MTA).
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S3 Fig. TSS concentration variability at different spatial resolution derived fromMODI-
S-Aqua, WV2 and Landsat-8 OLI in Clean Area (CA).
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Appendix IV 

Water samples were collected and filtered using 2 different cup designs. Two of the cups used a magnetic 
coupling system and had smaller filter apertures. Four of the cups were sealed by a screw thread and had a larger 
filter aperture.  

The samples filtered with the magnetic cups showed distinctly extreme and inconsistent TSS values compared to 
those filtered with the screw coupling. Figure 67 shows the TSS derived from both cup types for the surface (top) 
and bottom samples for 46 sampling stations. Notwithstanding the fact that the vertical distribution of TSS can 
be non-uniform, as evidenced by the OBS (Figure 13-Figure 15, 

Figure 35), LISST (Figure 36) and acoustic (Figure 40) profiles, for some sample locations the surface and bottom 
TSS values appear quite similar, but for other sample locations there is a significant mismatch between the 
surface and bottom samples. Figure 68 shows TSS results derived for screw cups only where surface and bottom 
TSS values are quite consistent. Figure 69 shows results for just the magnetic cups, displaying a more inconsistent 
surface versus bottom relationship when compared to the screw cups. In general, the magnetic cups also 
produced significantly higher TSS values than the screw cups. 

We assume the particulates were slightly magnetic and therefore were retained on the filter due to the presence 
of the magnetic coupling. All subsequent trips only used the screw cup filter holders. 

 

Figure 67. Filter-derived TSS for all 
water samples. For some sample 
stations the surface (top) and 
bottom samples are similar, but for 
other stations there is no similarity. 

 

Figure 68. Filter-derived TSS for the 
screw cups only. Sample stations 
are aligned and show results from 
surface (top) and bottom water 
samples. 
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Figure 69. Filter-derived TSS for the 
magnetic cups only. Sample stations 
are aligned and show results from 
surface (top) and bottom water 
samples. 
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