

THE UNIVERSITY OF Western Australia

Achieve International Excellence

Seagrasses of the Kimberley

PROF GARY KENDRICK - UWA

western australian

marine science institution

DR MAT VANDERKLIFT - CSIRO

Acknowledgments

WA State Government and WAMSI partners for supporting this research.

Collaborators: Doug Bearham, James McLaughlin, Lucie Chovrelat, (CSIRO), Andrea Zavala Perez, Bonnie Laverock (UWA), Christin Säwström (ECU), and the **Bardi Jawi Rangers and Traditional Owners**

Seagrasses grow like our urban lawns

Posidonia australis

Images: R. Hovey & J. Statton

Flower

15-20 mm

Food Web: Dugong grazing in Shark Bay (Cindy Bessey)

Global Distribution and Diversity

Halophila: Bocas del Toro, Panama

Thalassia: Kuna Yala, Panama

Ruppia: Morro Bay, USA

Zostera: Ria Formosa, Portugal

western australian

Seagrass life history

Halophila decipiens

Images: Korjent Van Dijk

Thalassia

Global map of human impacts

Fig. 1. Global map (A) of cumulative human impact across 20 ocean ecosystem types. (Insets) Highly impacted regions in the Eastern Caribbean (B), the North Sea (C), and the Japanese waters (D) and one of the least impacted regions, in northern Australia and the Torres Strait (E).

Halpern et al. (2008)

An extreme environment

Tallon Island

... and the dangers ...

and the second state

Seagrass biomass and productivity

Seagrass productivity: hole punch technique

Thalassia biomass

western australian marine science institution

Enhalus biomass

western australian marine science institution

Thalassia growth rates

western australian marine science institution

BETWEEN 0.5 AND 1.0 CM LEAF EXTENSION PER DAY

Enhalus growth rates

western australian marine science institution

BETWEEN 0.5 AND 1.5 CM LEAF EXTENSION PER DAY

Huge biomass in little volume of water at low tide! High Temperatures (35-38°C)

How stressful is this for seagrasses?

4 m tall scaffold to keep equipment dry at high tide

The experimental set-up

Aluminum profile

Micromanipulator

O₂ optode

Temperature probe

The O₂ optode and temperature sensor

Seagrasses photosynthesize and have a positive O₂ balance up to 40 degrees

Plants supersaturated in oxygen during the daytime low tides and hypoxic for 8-11 hours every night

All ba

Conclusion

With environmental temperatures of up to 40 °C both species are living **on the edge**!

Both species experience up to 8-11 h of severe shoot tissue hypoxia/anoxia each 24 h Temperatures of 40+ °C would lead to tissue damage that needs repair during the night – with little O₂ available!

Seagrass Grazing Studies

•Rabbit Fish Grazing

Turtle Grazing and Movement

Before

After

Thalassia: 27% consumed

Iwany Iwany

Savannah Savannah Iwany

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat

Google earth

Outreach

Sharing Knowledge with One Arm Point School

Collaboration with Bardi Jawi Rangers

- Provides traditional ecological knowledge
- Sustains traditional owners' livelihoods and connection to land

Management implications

western australian marine science institution

- •Seagrasses in the Kimberley survive extreme physical conditions, yet maintain high productivity
- •This productivity supports a diverse animal community, and must be managed accordingly
- •Growth rates and productivity more valuable than biomass or cover measurements
- •Further need to understand recruitment and seed ecology to understand pressures and future trajectories of Kimberley seagrasses
- •Community outreach and citizen science will be critical for driving the management of these meadows

Thank you to The Bardi Jawi Rangers

