Penguin ‘poop study’ to help unlock colony’s diet

Researchers from The University of Western Australia and Murdoch University are analysing DNA from the excrement of little penguins in Cockburn Sound to find out what, other than fish, they are eating and whether it is affecting their breeding.

Penguin researcher Dr Belinda Cannell, from UWA, said analysing the animals’ diet in greater detail would provide an insight into their breeding and how it related to the availability of their primary diet, which is fish.

Little penguins in Cockburn Sound (their northern most range in Western Australia) primarily eat anchovies, pilchards, scaly mackerel and sandy sprat.

Penguins are known to also feed on crustaceans, cephalopods and even jellyfish.

“If it’s a poor year and there are not a lot of fish around, the little penguins may be feeding more on other things such as jellyfish,” Dr Cannell said.

This could then have an impact on their ability to produce and raise young.

“This other food may not get them into the condition where they can breed and feed their young,” Dr Cannell said.

“It may be that the chicks don’t fatten up as quickly.”

She said diet made up one element of the project, which is part of the WAMSI Westport Marine Science Program.

Another methodology being used to determine diet composition is the analysis of stable isotopes of carbon, nitrogen and sulphur from the down of little penguin chicks and feathers from adults.

“Stable isotopes of carbon reflect primary production sources and is more enriched in inshore, seagrass dominated areas, compared to offshore food webs,” Dr Cannell said.

“The stable isotope of nitrogen increases up the food chain and can also increase between size classes of the same prey species.”

“Stable isotopes of sulphur can be useful to distinguish between offshore and inshore components in food webs and can also indicate if producers are using sulphur from seawater, which is more enriched, or from sediments which are less enriched.

“This gives us a better idea of the whole diet of these birds.”

Dr Cannell said stable isotopes assist with establishing diet composition.

“I presume little penguins are eating jellyfish, but we haven’t had stable isotopes for jellyfish until now.”

The Western Australian Museum provided samples to assist with the research.

Cockburn Sound research reports now online

Cockburn Sound research teams have started delivering project reports for their work on the WAMSI Westport Marine Science Program.

These are now published on WAMSI’s Cockburn Sound webpage under ‘Research Themes and Reports‘.

More than 100 scientists and researchers are working across 33 projects, helping to build a picture of the Sound’s environment and provide key input into the port design.

In one of the latest reports to be released, scientists have carried out a detailed literature review identifying potential invasive marine species which may have become established in Cockburn Sound, with procedures to mitigate the risk of introducing these to future Westport facilities.

Another project explores the potential effects of suspended sediment on fishes from dredging, while a social science study has identified and mapped 31 non-fishing recreational activities and 11 associated values for the Sound.

Reports will continue to be published on our website over the next few months.

 

Eco-design and pre-seeding among options to encourage healthy port marine life

Pre-seeding new port structures to encourage the colonisation of native species is one of the mitigation measures against invasive marine plants and animals, outlined in a new report prepared for the WAMSI Westport Marine Science Program.

The literature review by Curtin University School of Molecular and Life Sciences Adjunct Professor Fred Wells lists many of the invasive marine species that have been recorded in waters around Perth and mitigation measures that could be used during any port construction.

Pre-seeding works by attaching local, fast-growing species to a new structure. The common mussel is one option identified in the report.

Professor Wells said invasive marine species were a worldwide problem and shipping was the most common way they spread to coastal areas. Ninety-eight percent of trade in and out of Australia is on vessels.

“Invasive marine species are concentrated on artificial surfaces and eco-engineering is a new field that attempts to encourage biodiversity and prevent potential marine pests taking hold,” Professor Wells said.

“The risk of introducing new species is greatest during construction but experience during the construction boom in the Pilbara demonstrated the issue is manageable.”

Professor Wells said eco-design was a new and evolving field that could help improve the biodiversity of the marine community that develops underwater, while minimising the risk of invasive species.

“Current design procedures tend to create uniform habitats, such as seawalls with smooth vertical faces. The lack of habitat diversity reduces the biodiversity of the marine community that develops on the structure. “

“Increasing the habitat diversity of new immersed structures and pre-seeding them with native species appear to be the most promising ways for mitigating against species that can cause ecological harm and prove expensive.”

Professor Wells said the biggest threats from invasive species to marine ecosystems were introducing disease, displacing native species, changing the ecology of native communities, clogging pipes and damaging other critical infrastructure.

The report, which was done to understand potential risks, is a literature review of invasive marine species from Cottesloe to Cockburn Sound, including waters around Fremantle and the Swan River.

A comprehensive survey more than a decade ago recorded 60 introduced marine species living in WA waters. Three were on the national marine pest list. Four additional marine pests were subsequently recorded in WA.

“Fortunately, most introduced marine species are apparently innocuous, causing no known adverse effects and we know only a small portion become pests,” Professor Wells said.

 

 

Sediment samples at the core of a model project

Dozens of core samples, taken from sediment around Cockburn Sound, will play a crucial role in the creation of a model of the area’s ecosystem to help inform environmental assessment of the proposed port.

The work, being done as part of the WAMSI Westport Marine Science Program, involved divers collecting three sediment cores from 12 sites and scientists analysing them at a specially created laboratory nearby.

The project is being run by Professor Bradley Eyre from Southern Cross University and Professor Matthew Hipsey, from The University of Western Australia.

Professor Eyre said the tubes of sediment and water were set up in a laboratory, in the garage of a beachside home, where conditions simulated in situ temperature and changing light conditions between night and day, at the sediment surface.

“Some analysis is best done when we have fresh samples, so we wanted to avoid any delays,” Professor Eyre said.

“Other samples will be sent back to the Southern Cross University campus near Byron Bay, which has the only instrumentation in Australia for some of the analyses.”

The 12 locations in the Sound, represent different types of shallow and deep sediments including muds, seagrass meadows, and sandy areas.

“In the laboratory, we were measuring the flux of oxygen and nutrients in and out of sediment including nutrients such as ammonia and phosphate,” Professor Eyre said

“Some of the tubes contained sediment with seagrass growing in it.

“We are also measuring a critical process in the sediments called denitrification.

“Denitrification is a natural process by which ecosystems such as Cockburn Sound can remove nitrogen.”

“It is a really important cleansing process but if the carbon load gets too high the process can be reduced.”

The researchers said data from the sediment testing would underpin new water quality modelling of the Cockburn Sound ecosystem.

“The data complements other key experimental data being collected as part of the WAMSI Westport Marine Science Program on the chemical and biological conditions, allowing the development of Cockburn Sound Integrated Ecosystem Model platform to help manage the system,” Professor Hipsey said

“What we are measuring will reflect what is happening currently in the Sound and when used alongside the modelling we will be able to predict what will happen under future scenarios.”