Building trust among park managers and community through science

Research has shown that the success of marine resource management is influenced by the levels of trust that exists between decision-makers and the rest of society.

In his latest paper, “Building trust among marine protected area managers and community members through scientific research: Insights from the Ningaloo Marine Park, Australia”, published in the journal Marine Policy, lead author Dr Chris Cvitanovic from the Centre for Marine Socioecology at University of Tasmania, says community engagement is critical to management success.

“We wanted to understand what, if any, impact the Ningaloo Marine Research Program had on residents of the region.  To do so we surveyed 125 local residents across Exmouth and Coral Bay, and found that the majority of residents believe that scientific research is important for the management of the marine park, and strongly support government investment in scientific research in the region,” Dr Cvitanovic said.

“More interestingly, the results also suggest that science undertaken through the Ningaloo Research Program has increased the extent to which community members trust local MPA managers and decision-makers, with many community members also suggesting that  this increase in trust has led to improved social and environmental outcomes in the region.”

“The extent to which scientific research can build and maintain trust among MPA managers and community members, however, is dependent on an effective  community engagement and outreach program that is implemented throughout, and following the completion of, the research,” Dr Cvitanovic said. “To this end our study also identified strategies and opportunities to further enhance  trust between community members and marine park managers in the Ningaloo region, for example, via targeted communication and engagement programs that account for different personality ‘types’ and the establishment of new citizen science programs.”

Co-author Dr Kelly Waples fom the Department of Biodiversity, Conservation and Attractions (formerly Parks and Wildlife) said one of the values presented by the Western Australian Marine Science Institution, and captured in the latest paper, has been the initiative and opportunity to go back and evaluate how effective the research program has been with respect to conservation outcomes.

“It has been a very valuable exercise to assess the elements of these large research programs that work well and where we may need to increase our efforts to ensure conservation outcomes for the marine environment and for the community,” Dr Waples said. “It does confirm that government investment in science has been very worthwhile and, given what we have learned, benefits will be improved in future programs.”

The research was funded by the Western Australian Department of Biodiversity, Conservation and Attractions, the Western Australian Marine Science Institution and the Centre for Marine Socioecology at the University of Tasmania.

 

Cvitanovic C, van Putten EI, Hobday AJ, Mackay M, Kelly R, McDonald J, Waples K, Barnes P (2018) Building trust among marine protected area managers and community members through scientific research: Insights from the Ningaloo Marine Park, Australia. Marine Policy doi.org/10.1016/j.marpol.2018.04.010

Confidence needed to turn ageing oil and gas infrastructure into reefs

A review of Western Australian stakeholders has found that many are in favour of decommissioned oil and gas platforms being left to serve as artificial reefs as long as there is evidence to support the social, economic and environmental benefits.

The report was delivered by the independent Western Australian Marine Science Institution and jointly commissioned by the state government, fisheries, oil and gas, community, research, and regulatory sectors in response to the Blueprint for Marine Science 2050 report which identified better knowledge about the effects of decommissioning offshore infrastructure as a priority.

Over the next 10-20 years an increasing number of offshore oil and gas facilities around Australia will cease producing hydrocarbons and will require decommissioning. 

The process of decommissioning offshore oil and gas infrastructure is extremely expensive at a project level, and will become a major cost to the industry as a whole. Given the cost, safety issues and potential environmental risks associated with complete removal, there is interest, particularly from the oil and gas industry, in exploring other options.

 

Expected operational life of selected WA oil & gas projects. (Source: The Blueprint for Marine Science Report 2050. Pg 47 Estimates taken from Company Annual Reports)(Shaw et al 2018)

 

More than 120 stakeholders and association representatives from across sectors of the community from Perth, Exmouth, Karratha, Dampier, Port Sampson and Canberra were consulted. The group identified more than 900 issues, opportunities and concerns, which were developed into 30 questions that could be addressed through scientific research.

The priority science questions included:

  • What are the direct environmental impacts on fish species including from contamination, noise, habitat removal and cumulative ecological effects?
  • What is the timeframe for breakdown (corrosion) of the various standard components of oil and gas infrastructure?
  • What are the main contaminants following decommissioning, will they be released into the environment, and what are the toxicity issues?
  • Can the contaminants resulting from decommissioning be completely removed e.g. from sludge, scale, sands and drill cuttings?
  • Does oil and gas infrastructure (including pipelines) increase productivity of key fish species and biodiversity generally?

The consultation also identified a number of policy issues that are not science related such as managing navigation risks, who ultimately retains liability for infrastructure left in the ocean, the sharing of financial benefits from leaving infrastructure in situ and managing resource allocation of any new fisheries or environmental resources created.

A range of issues were raised in regard to improved communication with stakeholders about existing knowledge. The project also identified that a number of stakeholders were not satisfied with the current approaches to consultation regarding development operations, decommissioning activities, or policy discussion.

Lead author Dr Jenny Shaw said that while there is knowledge about the effects of decommissioning that can be drawn from the North Sea and the Gulf of Mexico, those surveyed believed it could not confidently be relied upon in Australian conditions.

“This was particularly true for issues around fisheries and environmental impacts given the uniqueness of Australian marine ecosystems,” Dr Shaw said. “The size and scale of the science questions that need to be addressed to resolve the uncertainties around decommissioning confirms that a strategic program of science projects that are unique to Australia’s offshore environment need to be developed to support company, regulator and community decisions on this subject.”

Although the information in the report was deemed to be relevant to oil and gas provinces across Australia, Western Australian stakeholder views were not assumed to be the same as those from other regions.

 

Shaw J.L., Seares P., Newman S.J. (2018) Decommissioning offshore infrastructure: a review of stakeholder views and science priorities. WAMSI, Perth, Western Australia. Pp 74. (www.wamsi.org.au/decommissioning-offshore-infrastructure-review-stakeholder-views-and-science-priorities)

EPA Gives Green Light for Beadon Creek Dredging

Category: 

Dredging Science

Funding Boost for Western Australia’s Blue Economy

Western Australia’s blue economy has received more than $2.6 million in funding over three years to support marine science.

The funds will go to the Western Australian Marine Science Institution to support the implementation of The Blueprint for Marine Science, which will guide long-term collaboration between all sectors operating in the marine environment.

The Blueprint will establish Western Australia as a hub for global marine science and support industry, community and government activities off our coast.

Australia’s blue economy is expected to be worth $100 billion by 2025. It encompasses many activities for economic growth, including renewable energy, tourism, fisheries, oil and gas, and maritime transport – balanced with the need to ensure the ongoing health of our oceans’ ecosystems.

More.

Listen to WAMSI CEO Dr Luke Twomey on ABC Country Hour here.

WAMSI Bulletin March 2018

New Tool to Forecast Marine Response to Changes in the Kimberley

An international team of researchers has developed and tested a conservation tool for the Kimberley region, in Australia’s far northwest, that can predict how marine species may fair under different climate and development scenarios.

A range of scenarios was modelled by scientists from CSIRO and Canadian-based ALCES under different management strategies to provide some insight into the potential pattern of responses by marine species over a 35 year period until 2050.

Changes in levels of conservation effort where compared against the three biggest environmental pressures of warming, rainfall and development.    

The researchers found that the dynamic Kimberley system, which is driven mostly by seagrass and algae (70%), reacted independently to many of the environmental pressures put on it.

 

Summary of result of scenario analysis

 

While variations in population growth made little difference to the overall outcome, groups and elements within the marine environment were found to respond differently to climate and development pressures, some showing dramatic variation between scenarios, and others showing very little.

WAMSI project leader, CSIRO’s Dr Fabio Boschetti, recently presented his team’s findings to Department of Biodiversity, Conservation and Attractions researchers and managers in Perth. He  explained that the use of modelling tools was not an ‘absolute’ prediction but attempts to say something about how the system may respond to different management decisions based on our current understanding.

“We analysed different conservation strategies ranging from doing nothing at all, to medium and high conservation efforts,” Dr Boschetti said. “Current conservation efforts are running at about medium.”

“What we did find interesting was that such a dynamic system was so independent of the forces,” Dr Boschetti said. “When we included a conservative 2.5 per cent population growth rate per year, which is quite high, we were still surprised to see it made such a small imprint on the system as a whole. It would be interesting to model spikes in evolution, such as unusual warming or rain events.”

Dr Hector Lozano-Montes (CSIRO) collated information from the results of 25 projects under the Western Australian Marine Science Institution’s (WAMSI) Kimberley Marine Research Program in order to describe the ‘system’ and develop an interactive dynamic food web based on how much marine biomass there is and where it is.  This work has resulted in the development of a more detailed picture of the complete interactions that occur in the Kimberley marine system.

The Ecopath system

 

Links:

Knowledge Integration and Management Strategy Evaluation Modelling_WAMSI KMRP project 2.2.8 Report_Boschetti et al 2017_Final

WAMSI Project Page: www.wamsi.org.au/modelling-future-kimberley-region

 

The $30 million Kimberley Marine Research Program is funded through major investment supported by $12 million from the Western Australian government co-invested by the WAMSI partners and supported by the Traditional Owners of the Kimberley.

 

Category: 

Kimberley Marine Research Program

Kimberley coastline key to monitoring shorebird decline

Researchers looking into the declining number of long-distance shorebirds say, while there is clear evidence that changes in Australian populations are strongly influenced by factors outside of the country, there may also be losses due to habitat pressure in the Kimberley.

A shorebird monitoring project, supported by the Western Australian Marine Science Institution, found some evidence suggesting that local habitat preferences of shorebirds in northwestern Australia have changed in response to human disturbance of roost sites, mangrove incursion on some beaches in northern Roebuck Bay.

The study, led by Danny Rogers and Chris Hassell from the Australasian Wader Studies Group, focussed on the coastlines of Roebuck Bay and Eighty Mile Beach.

Organic pollution of groundwater from Broome has contributed to algae blooms in Roebuck Bay, which may have detrimental effects on the food available to shorebirds.

“It is not yet clear whether these problems have only resulted in local relocation of shorebirds, or whether it affects their survival rates and population counts,” Danny Rogers said.

Bottom row: Greater Sand Plovers (Charadrius leschenualtii),
Top row (one mostly hidden): Great Knot (Calidris tenuirostris)
At right centre: Red Knot (Calidris canutus)
(Image: Danny Rogers )

Shorebirds carry out long-distance annual migrations between their feeding grounds in the arctic and non-breeding grounds in the southern hemisphere.

During their non-breeding season, migratory shorebirds are broadly distributed along those parts of the northern Western Australian coast with extensive tidal flats. Especially large concentrations are in Roebuck Bay and the northern 80 kilometres of Eighty Mile Beach.

Of the 41 shorebird species occurring regularly along this coastline, 18 species occur in internationally significant numbers (>1% of the population in the East Asian – Australasian Flyway). In total, more than 635,000 migratory shorebirds depend on the tidal flats of the northwestern Australian coast.

“Given the strong external influences on shorebird numbers in Australia, it is clear that Australian-based monitoring serves an important purpose as a barometer of shorebird populations throughout the East Asian – Australasian Flyway,” Danny Rogers said. “As the most important non-breeding region for shorebirds in Australia, Kimberley coastline monitoring is a very important part of this monitoring effort.”

Links:

Evaluating the impacts of local and international pressures on migratory shorebirds in Roebuck Bay and Eighty Mile Beach_WAMSI KMRP project 1.2.6 Report_Rogers et al 2017_Final

WAMSI Project Page: www.wamsi.org.au/pressures-migratory-shorebirds

The $30 million Kimberley Marine Research Program is funded through major investment supported by $12 million from the Western Australian government co-invested by the WAMSI partners and supported by the Traditional Owners of the Kimberley.

Category:

Kimberley Marine Research Program

Giant tides supply food and nutrients to Kimberley reefs

Researchers from The University of Western Australia Oceans Institute have been studying how giant tides in the west Kimberley (up to 12 metres range) flush reefs with water rich in nutrients and phytoplankton, which are food sources for seagrass, algae, coral, and other reef organisms. 

In a journal article recently published in Limnology and Oceanography, the scientists, working on the Western Australian Marine Sience Institution’s (WAMSI) Kimberley Marine Research Program, showed how semidiurnal and spring-neap tidal cycles helped control nutrient availability on reefs.   

 

Professor Ryan Lowe, Dr Renee Gruber, and Dr Jim Falter worked on Tallon Island, a fringing reef in the Sunday Island group, with assistance from the Bardi Jawi Rangers and Kimberley Marine Research Station staff.

The researchers placed instruments on the reef to measure flow speeds and chlorophyll concentrations in waters flowing over the reef.  Chlorophyll is a pigment present in green plants and is used to estimate how much phytoplankton (a food source for coral) is present. 

The researchers also built a four metre high scaffold on a sandy part of the reef to hold an automatic water sampler that collected water samples throughout the tidal cycle. This study occurred over three weeks in order to measure how the conditions varied over a complete spring-neap tidal cycle.

 

Platform and water sampler on Tallon Reef during high tide (Renee Gruber)

 

Many Kimberley reefs sit close to mean sea level and become “cut off” from surrounding ocean waters when the tide falls below the level of the reef crest. The researchers found that during these periods, almost all chlorophyll is grazed from the water column and reef organisms must wait for the next flood tide to feed again. 

By measuring the chlorophyll entering and exiting the reef each tidal cycle, the researchers determined how much feeding occurred over the entire reef platform and estimated that phytoplankton provided ~50% of the nitrogen used by the reef community.

Although approximately 30% of reefs worldwide experience water motion driven predominantly by tides, almost all scientific studies of reefs to date have focused on locations where the flows responsible for ocean-reef nutrient exchange are driven mainly by currents generated by breaking waves. 

Giant clams are an abundant filter-feeding organism on Tallon Reef (Renee Gruber)

 

“Our results are an important first step in understanding how tides can affect the productivity and growth of reef communities,” Dr Renee Gruber said. “The physics of water motion control many aspects of an organism’s life cycle, and we must first understand the physics before we can predict how future challenges such as sea level rise and ocean warming will affect tidally-driven reefs.” 

This study was also among the first to publish water quality data for the coastal Kimberley region, which is a first step in helping managers set baselines and interpret future changes in environmental condition in the broader region. 

Links:

Gruber R, Lowe R, Falter J (2018) Benthic uptake of phytoplankton and ocean-reef exchange of particulate nutrients on a tide-dominated reef. Limnology and Oceanography doi: 10.1002/lno.10790

Project Page: www.wamsi.org.au/benthic-community-production

 

The $30 million Kimberley Marine Research Program is funded through major investment supported by $12 million from the Western Australian government co-invested by the WAMSI partners and supported by the Traditional Owners of the Kimberley.

Category: 

Kimberley Marine Research Program

Where to find WAMSI science data

Data from the Western Australian Marine Science Institution’s WAMSI-2 projects (2012-2018) is discoverable and available for reuse.

WAMSI Data Manager, Luke Edwards from the Pawsey Supercomputing Centre, manages the collection and storage of data from the programs including:

WAMSI Dredging Science Node

Kimberley Marine Research Program

Wheatsone sawfish offsets project

“One of the great legacies of the WAMSI science is that the data is made discoverable for ongoing and future research,” Luke Edwards said. “Data is made public after the default 18 month embargo period to enable researchers to publish.”

For example, KMRP project 1.3.1 on Reef Growth and Maintenance has data publicly available now.  The link to the metadata record is http://catalogue.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=7ab491d2-9507-428c-aed1-091d2aaed521.

Within the metadata, there are links to the Pawsey Data Portal, where it is held.

As well as the Pawsey Data Portal, data is stored in the CSIRO Data Access Portal (DAP) and AIMS Data Centre.

Data discovery and access starts via the AODN catalogue – http://catalogue.aodn.org.au/geonetwork/.  To see all WAMSI 2 projects, type WAMSI 2 into the “Title” search box.

Other discovery pathways are being developed including via the WA Open Data catalogue – https://catalogue.data.wa.gov.au/group/wamsi.

Other WA Government marine data is available here – https://catalogue.data.wa.gov.au/group/0-wa-marine-map.

 

Category:

Sawfish Project Kimberley Marine Research Program Dredging Science

Sediment timeline reveals climate change influence on Kimberley

By: Jo Myers, CSIRO

The remote Kimberley coast of northwestern Australia is one of the few marine environments on earth largely unaffected by human use. However, the region is undergoing increasing economic importance as a destination for tourism and significant coastal developments associated with oil and gas exploration.

A team of researchers, which included scientists from CSIRO, Edith Cowan University, La Rochelle University and the Chinese Academy of Sciences, collected sediment cores from three coastal locations in the Kimberley region, to provide an indication of the level of variability and change in water quality over the last 100 years.

The study locations of Koolama Bay (King George River), Cygnet Bay and Roebuck Bay in the southern, central and northern Kimberley were selected as each offered a different perspective in comparison of levels of human use or natural environmental variability.

Collecting sediment cores at Cygnet Bay (CSIRO)

The team found that for the Kimberley in general, climate change, in particular temperature increases have had, and may continue to have, a significant influence on phytoplankton biomass.

Analysis of cores from the Broome site lent general support to other studies which have indicated increased nutrient pollution levels in Roebuck Bay.

At Cygnet Bay, where pearl farming has occurred since the 1960s, there were small but detectable, gradual changes in the environment evident over the long term.

Sediment cores indicated increased nutrient pollution levels in Roebuck Bay.

The project also undertook a pilot study using the King George River cores, which indicated that coastal sediment cores could reveal long-term patterns of bush fires in different catchments in the Kimberley.

Links:

Yuan Z, Liu D, Keesing, J K, Zhao M, Guo S, Peng Y, Zhang H (2018) Paleoecological evidence for decadal increase in phytoplankton biomass off northwestern Australia in response to climate change. Ecology and Evolution doi:10.1002/ece3.3836

The project report Sediment Records in the Kimberley_WAMSI KMRP Report 2.2.9_Keesing et al 2017_FINAL is available at www.wamsi.org.au/sediment-record

The $30 million Kimberley Marine Research Program is funded through major investment supported by $12 million from the Western Australian government co-invested by the WAMSI partners and supported by the Traditional Owners of the Kimberley.

Category:

Kimberley Marine Research Program