Marine interdependence – From turtle hunting crabs to tongue eating louse

A camera focused on a Ningaloo Reef beach captures life and death in a marine ecosystem in its rawest form: Ghost crabs scramble to catch freshly hatched loggerhead sea turtles before sea gulls swoop in to snap up others as they stagger towards the shoreline.

Once in the water, there are new predators for the few that make it that far, but also organisms for them to eat and fuel their growth.

The footage, shot by recent PhD graduate Casper Avenent, was played to students as part of a WAMSI Thinking Blue lecture on the ‘Interdependence of organisms in marine ecosystems’ by Professor Glenn Hyndes from Edith Cowan University.

“As for the golden ghost crabs, they are possibly eaten by rays and dingoes but we don’t know”.

The scene on a small part of one Australian beach represents a much bigger ecological story.

“On this one beach at Ningaloo, there are different species of ghost crabs with very different diets,” Professor Hyndes said.

“We have found from gut analysis, the horned eyed ghost crabs feed a lot on insects and the golden ghost crabs will feed on carrion including dead rats, birds, fish, as well as turtle eggs and hatchlings.”

Professor Hyndes’ talk incorporated the many ways various species of plants and animals are interdependent and along with the video from the Exmouth area, he used an example of life along the south coast of Western Australia.

“There is algae, consumed by abalone and sea urchins, which are eaten by animals such as western blue groper. Bronze whaler sharks are consuming fish.”

One theme of Professor Hyndes’ talk was ‘Habitat Matters’.

Certain jellyfish provided shelter for juvenile fish and seagrass also played a vital role in a number of ways including giving a habitat for fish.

“The different seagrass species will be important for different fish species. For instance, the sea trumpeter fish prefer the canopy formation of the Amphibolis griffithii seagrass and blow fish are more likely to swim among the more sparce Posidonia coriacea.

Another example of interdependence was the anemone fish which can have sea louse feeding on its tongue and the inside of its mouth.

“This has a negative impact on the fish but there are cleaner wrasse fish that feed on the louse” Professor Glenn Hyndes said.

Professor Hyndes’ talk, including his slides and video footage from Ningaloo, can be found here on the WAMSI YouTube page.

How does the ocean’s only flowering plant cope with being buried?

In water tanks at Edith Cowan University, pots containing Posidonia sinuosa, the most widespread species of seagrass in Cockburn Sound, have been tested to see how much burial under sediment they can withstand. The research, part of the WAMSI Westport Marine Science Program, is looking at the resilience of the ocean’s only flowering plant, to dredging.

ECU researcher, Chanelle Webster, said seagrass was an important part of the ecosystem – providing not only food and habitat for marine animals but also stabilising the seabed and storing carbon which could help combat climate change.

Seagrasses tend to occur in the shallow waters along coastlines as they require a lot of sunlight, but they are easily affected by disturbances in the light reaching the plants.

“One of the main impacts of dredging is changing the amount of light plants receive when sediment is stirred up during operation,” Ms Webster said.

“Another effect of dredging on seagrass is when sediment gets moved and dumped in an area, the particles can settle on seagrass and bury it. This is where my experiment comes in.”

“There are about 10 different species of seagrass in the Sound but Posidonia sinuosa is the main species, you can find it in all areas of the Sound from Kwinana to Garden Island, and this is why we decided to do the experiment with this species.”

“We have been trying to understand how much burial Posidonia sinuosa can tolerate before you start seeing negative impacts to their growth or survival.”

Some of the potted seagrasses had no sediment added, others had up to 16 centimetres of sediment put on them in controlled conditions over four months.

The research team measured the amount the plants grew and noted cellular changes.

“From preliminary analysis, plants tolerate up to four centimetres of burial by sediment but with eight centimetres and more of burial they are impacted.

“When plants were buried by 8cm or more of sediment the growth was significantly less.”

The research indicated Posidonia sinuosa could tolerate burial of four centimetres of sediment for 16 weeks which was the duration of the experiment.

Ms Webster said while further analysis was still to be done, the preliminary results were promising in terms of being able to minimise impacts to seagrasses in the Sound.

WAMSI offering two free student registrations for lobster biology conference

The Western Australian Marine Science Institution is offering two WA-based Honours, Masters or PhD students the chance to improve their understanding of rock lobster and crab biology with free registration for the International Conference and Workshop on Lobster Biology and Management (ICWL) in Fremantle this October.

The theme of the 12th ICWL is ‘Ecosystem-based fisheries management (EBFM)’ – an approach that recognises all interactions within an ecosystem rather than considering a single species or issue in isolation.

WAMSI is a Bronze Sponsor of the conference and has secured two student registrations to offer people undertaking study at any of our partner universities (Curtin University, Edith Cowan University, Murdoch University and The University of Western Australia) or working at our partner organisations while doing further studies. They must be WA based but can be enrolled at other universities.

WAMSI Research Director Dr Jenny Shaw said it was an opportunity for students to find out more about marine research and fisheries and explore career opportunities.

“The ICWL began in Perth more than 40 years ago. At the time, 37 biologists from six countries met to discuss and compare their work on a range of lobster topics,” Dr Shaw said.

“Since then, it has grown in popularity and prestige.”

“Given the WA rock lobster fishery is the largest single species fishery in Australia with a value of more than $450m annually and was the first in the world to achieve Marine Stewardship Council accreditation, this is a fabulous opportunity for students to learn more about the industry as well as science around the species.

“It’s also a terrific opportunity to network at a prestigious, international conference.”

Students who are interested in applying for WAMSI’s student registration offer are asked to:

Write a letter (maximum of one page) outlining their area of study, explaining how they would benefit from attending the conference and stating where they are enrolled.

Applications should be addressed to Dr Jenny Shaw and be emailed to info@wamsi.org.au by 5.00pm on Monday 4 September 2023. A decision will be made on Monday 18 September.

Details about the conference can be found here.

Data team collecting, checking and delving into historical records

While dozens of scientists working at Cockburn Sound are busy with field trips and laboratory work, a team behind the scenes is occupied with managing huge amounts of research data while also uncovering and collating crucial historical data to feed back to the projects.

Dr Alicia Sutton, who is part of the Western Australian Marine Science Institution Location Data Management Services team, said its role was to help with quality control on current data collection and locate historical scientific information to support the WAMSI Westport Marine Science Program’s 30 projects.

“With historical data, we collate data from as far back as possible,” Dr Sutton said.

“One source of data has come from seagrass monitoring which has been collected by the Cockburn Sound Management Council for many years. This data has been provided to WAMSI researchers looking at seagrass in the Sound to provide context and allow for comparisons.”

Another example is collating data on beach profiles (measurements of the angles of the shoreline to look at variability in topography and slope) previously collected by local and State Government, which WAMSI researchers are using to understand shoreline movement across time.

“Water quality data has also been collated across industry and government bodies to help inform a water quality response model for Cockburn Sound as part of the WAMSI Westport Marine Science Program.”

Dr Sutton said collecting historical data had been challenging but it would have benefits beyond the current science program.

“In the case of data collected during the WAMSI Westport Marine Science Program, data will become publicly available and be accessible for the long term.”

“That is going to be really helpful for future projects and will allow researchers and other stakeholders to access relevant data easily, without having to contact multiple organisations and trawl through large volumes of reports,” Dr Sutton said.

The range of the data coming in from the projects of the WAMSI Westport Marine Science Program is broad. It includes spatially mapped data, photos and video footage, models, acoustic spectrograms, social surveys, laboratory and field experimental studies, biological surveys and more.

The data from the current science program, when combined with other available government and industry data has the potential to support the development of regionally specific products and science outcomes, including hydrodynamic and sediment transport models and integrated marine ecosystem biogeochemistry and ecological models.

Managing the data and keeping it safe is a big task.

Data is stored on a collaborative but secure WAMSI storage space as well as at the Pawsey Super Computing Research Centre.

Studying the elusive syngnathids of the Sound

Dozens of Perth divers and keen underwater photographers are helping research into the seahorses and pipefishes of Cockburn Sound and Owen Anchorage as part of a project which will also see water-borne DNA tested for evidence of the beautiful but elusive animals.

The project forms part of the WAMSI Westport Marine Science Program and Dr Glenn Moore, the Curator of Fishes at Western Australian Museum, is leading a research team looking into the diversity and distribution of syngnathids, a family of highly specialized and often cryptic fishes that also includes seadragons.

The fish have national protection under the Environmental Protection and Biodiversity Conservation Act of 1999.

“They are one of the most challenging groups of fish to survey,” Dr Moore said.

“We can’t run fine nets over the reef because they get caught up and the fish are difficult to spot diving, so we are using multiple methods including looking at historical records.”

“We are using as many data sources as we can to try and compile as much information as possible about the syngnathids in the Sound.”

Dr Moore said citizen scientists had so far uploaded more than 1,000 images to an online portal along with the location where the fish were spotted.

He said one limitation of citizen scientists was they tended to head towards common dive areas where seahorses were well known but the information was still valuable.

Environmental DNA testing will also start soon on water collected from Cockburn Sound to add to information about their distribution.

“We have done some water sampling and we will do eDNA work in the next few months.

“We have frozen water samples and these will be analysed at a specialist laboratory at Curtin University.

“We are hoping we can start to build a picture of their distribution and habitat preferences,” Dr Moore said.

He said part of the eDNA work involved building a DNA library.

“You need to have something to match the eDNA to when we are doing the analyses.

“We need to get DNA from specimens we are looking for and that is a challenge because we don’t get to collect all the species we know are there.”

Dr Moore said most syngnathids lived in shallow coastal waters and were especially reliant on habitats well represented in Cockburn Sound, including seagrass, filter-feeder communities, shallow detritus, reefs and artificial structures.

He said the distribution, habitat preferences and abundance, particularly of seahorses and pipefish, wasn’t well known but the research aimed to find out more with the aim of improving their protection.

Photos: Western Australian Museum

Science influences art in a marine-inspired exhibition

An art exhibition that fuses scientific knowledge with creative inspiration is set to open later this month in Albany.

Immerse will feature artworks by 20 MIX Artists from the Great Southern that showcase a unique art-science collaboration between contemporary artists and marine scientists working in the region.

The waters of the south coast and around Albany are well known for their unique diversity of plants and animals, as well as their productivity, and the works will convey important marine science knowledge and current research from the region to a broad audience.

The Western Australian Marine Science Institution coordinated opportunities for the MIX Artists to learn from marine scientists, through talks and presentations, provision of resources and engagement with marine science students from The University of Western Australia during a field trip. The artists also followed up with ongoing self-research and observation of their environment.

Dr Jenny Shaw, WAMSI Research Director, said it had been particularly interesting to observe how the artists were interpreting their local marine environment.

“It’s been a great opportunity to move science into the community and also see different interpretations of marine research topics,” Dr Jenny Shaw, WAMSI

“The scientists benefit from explaining their work to different audiences and the interest from the artists has been incredibly high, contributing to a shared appreciation for the marine environment.”

The interaction between artists and scientists and the resulting creative process has been well documented and will enable the exhibition audience to learn more about the art-science collaboration.

MIX Artist coordinator Annette Davis said the collaboration had given the MIX Artists fantastic insight into another world and engagement with the scientists have been fundamental as to how the artworks had developed.

“Responding with intuition, curiosity, and imagination, the artists have interpreted their findings through chosen materials and techniques and created individual artworks to help move this understanding into the wider community,” Ms Davis said.

Topics that have inspired the artworks centre around the finely balanced coastal environment and the impact of structural change, such as the threats of plastic pollution and rising sea levels, but also include an emphasis on restoration methods to protect the marine environment.

The pursuit of marine science has inspired some artists.  Catherine Higham has used seagrass and seaweed, on a structure made from willow and bamboo, to make a large-scale listening horn to listen to underwater life.   Another artist used the shapes of scuba diving equipment and scientific data to create a ‘newly discovered’ sea creature, named Scubadeepus data-analyticae, in homage to marine scientists.

Christine Baker’s work, titled Micro Plastic Menu, was inspired by a talk on microplastic contamination in the ocean by UWA’s Dr Harriet Paterson and how it can potentially be transferred through marine food chains.

Immerse will run at the Albany Town Hall from Friday 21 January until Saturday 25 February.   Artists and scientists will talk about the process of this project at a special free event titled Dive In on Saturday 4 February in the Town Hall auditorium.

After being shown in Albany, the exhibition will tour to the Collie Art Gallery, where it will run from 6 May to 11 June.

More information is available here: http://www.mixartists.org/immerse.html

How hair dye is helping conservation of WA’s sea lion population

An innovative new project is using human hair dye on Australian sea lions at Carnac and Seal Islands off the coast of Perth to track and learn about the local population.

Edith Cowan University (ECU) are jointly leading the project with Department of Biodiversity, Conservation and Attractions (DBCA) marine researchers, in collaboration with Department of Primary Industries and Regional Development (DPIRD).

The Australian sea lion (ASL) project forms part of the Western Australian Marine Science Institution (WAMSI) Westport Marine Science Program.

“The hair dye marks are temporary and completely safe, just like hair colour on a human, but for a period of about two months it allows us to identify each sea lion and monitor how often they move amongst the six haul-out islands, such as Carnac Island and Seal Island.

“This project also enables monitoring of the total numbers that occur in the Perth metropolitan area when the animals are at their peak numbers, which is anticipated to be around December or January,” ECU Associate Professor Chandra Salgado Kent said.

The marking method, which has been applied to other species of seals and sea lions elsewhere, is non-invasive and does not harm the animals in anyway.

It only takes a matter of minutes, less than an appointment to the hairdresser!

“A layer of dye is spread on numbers with foam material on them, and the numbers are mounted on a plate attached to a long pole, we then press the plate onto the sea lions back or side.

The poles allow us to keep our distance to create minimal disruption to the sea lions,” Associate Professor Salgado Kent explained.

Tracking via satellite

The use of satellite tags is also being deployed by the expert team, that includes DBCA, ECU and ANU researchers, DBCA and Werribee Open Range Zoo wildlife veterinarians and DBCA and DPIRD marine rangers and wildlife officers.

“We are trying to better understand how many sea lions use the area and where they may be foraging,” DBCA’s Kelly Waples explained.

“To do this we will be putting satellite tracking devices on a small number of sea lions.  These tags are a small package that is unobtrusively glued to the fur on their back just behind their shoulders and will be retrieved from the sea lions in a couple of months’ time before the animals fully moult.”

The satellite tags have already been successfully attached to four sea lions, who were also marked with the hair dye.

Sea lion behaviour and conservation

Male sea lions tend to move between breeding islands around Jurien and haul-out sites in the Perth metro area, many using the Perth Metro Area during non-breeding periods.

The satellite trackers will help obtain high resolution information on where they forage and what habitat is important for them to find and capture their prey.

By understanding which habitats are important, the researchers can get a better understanding of how to manage and protect this endangered species, that have experienced a more than a 60% decline in numbers over the last 40 years.

Simple and effective

The satellite tags are attached only to the fur of the animal using glue.

“This ensures that the animal is not impacted by having the tag on them, and we retrieve the trackers after a month or two so that we can download the high-resolution data from the tag,” Associate Professor Chandra Salgado Kent said.

The ASL hair dye marking, and satellite tracking will continue over the next few months, providing the researchers with information on sea lion behaviours, movement patterns and numbers in the Perth metropolitan area.

Art and ocean science come together to inspire unique exhibition

A new initiative connecting art and marine science will see a group of south-west artists create a series of contemporary artworks inspired by Western Australia’s unique marine environment.

This exciting collaboration between scientists and artists will lead to the aquatic-themed public art exhibition ‘Immerse’ exploring issues about the marine environment early next year.

MIX Artists Inc is a group of contemporary artists in the Great Southern region of Western Australia who work in a wide range of media including sculpture, installation, painting, photography, textiles, and digital media.

WAMSI is connecting the artists with researchers across the partnership to help inform their art practice and provide information on the biodiversity of the South Coast marine environment.

The approach challenges them to use their creative skills to conceptualise and communicate marine science in a unique way.

Earlier this year, WAMSI’s Research Director Dr Jenny Shaw presented an overview on the extent of research being carried out in the South Coast region, featuring content from researchers across the WAMSI partnership. The artists later joined the UWA Ecology Fieldwork trip to sample research in action.

The exhibition will document the artists’ process, including the interaction between artists and scientists over the course of the year.

Opportunities for the artists to pursue their learning about the marine environment will continue through fieldwork trips, talks by scientists, provided resources and other activities and their own research.

WAMSI Research Director Dr Jenny Shaw, said the collaboration was a great opportunity to move science into the community.

“Often scientists are very skilled at research and know so much about a particular topic but have difficulty moving that knowledge into the wider community.” Dr Jenny Shaw, WAMSI

“The creatives are exceptionally skilled at doing exactly that.  We are thrilled that this talented group of Albany Artists has decided to ‘immerse’ themselves in marine science and create an exhibition for the whole community to enjoy and perhaps learn more about some of the amazing things in their local marine environment.”

MIX Artist Chair Annette Davis said the engagement with the scientists to date had been incredibly enlightening.

“Looking down the microscope, watching underwater videos, meeting two groups of students as they came in off the water, watching the informative and amusing presentations and hearing the students answer penetrating questions about their methodologies – it was all very interesting and stimulating and has contributed to our considerations about the exhibition and the curatorial approach,” Ms Davis said.

The artists are continuing to connect with scientists during the investigative phase of their research.

The exhibition will take place in Albany and run from 20 January – 25 February 2023.

A new life for old infrastructure

Coastal development is expanding rapidly across the state and it is estimated there are now more than 7,400 man-made marine structures, ranging from oil and gas infrastructure to shipwrecks and artificial reefs, in Western Australia.

In coming years, there will be increasing proposals to build new infrastructure in WA’s marine environment and regulatory approval will need to consider the impacts on stakeholders with a vested interest in the future of these structures.

Recreational fishers are an example of a sector that have become increasingly aware of the value of the marine life that has grown on, around and near these structures and are keen to capitalise on the ecosystem benefits to improve fishing experiences.

Recognising the need to better understand these impacts, research, funded by the Fisheries Research and Development Corporation and Chevron, assessed the values and benefits associated with these structures, examining stakeholder attitudes towards their installation or removal.

The published report, Enhancing the Understanding of the Value Provided to Fisheries by Man-made Aquatic Structures, is the result of a collaboration of researchers and subject experts across the WAMSI partnership.

Taking into account the hopes, aspirations, and concerns of all stakeholder groups, it suggests future installation of marine man-made structures will need to meet the social and environmental values and expectations of the community.

Lead researcher Professor Euan Harvey from Curtin University, said the work would inform future policy decisions, not only for the decommissioning of built structures in marine environments, but also for the design and installation of new projects.

“Whether it be in the form of new ports, offshore renewable energy, subsea cables and aquaculture facilities, WA is paving the way in delivering future marine infrastructure projects,” Professor Harvey said.

“This report will provide a vital point of reference for regulators, proponents and other stakeholders when considering the social and economic impacts of installation and removal.

“By considering the socioeconomic values of all potential stakeholders during the planning process, it will become increasingly more possible to maximise the social and economic benefits to potential users.”

“The marine structures of the future could be designed with decommissioning and removal in mind.”

WAMSI acknowledges the following authors for their input:

Euan Harvey, Fran Ackermann, Georgie Hill (Curtin), Julian Clifton, Michael Burton, Carmen Elrick-Barr, Johanna Zimmerhackel, Julian Partridge, Paul McLeod (UWA), Stephen Newman, Mark Pagano (DPIRD), Jenny Shaw (WAMSI) and Dianne McLean (AIMS)

Modelling reveals greatest threat to Kimberley

Climate change, not economic development, is the biggest threat to the Kimberley region, putting resident species such as reef fish at risk according to long-term environmental modelling.

A team of researchers from CSIRO carried out complex modelling across a network of Kimberley marine parks to explore the future impacts of climate change and human development at a regional scale.

Using a range of economic development and climate change scenarios they applied socio-economic and environmental modelling to create a projection of the Kimberley marine system up to the year 2050.

Based on the projected future models, CSIRO lead Dr Fabio Boschetti anticipated climate change would have the most significant long-term impact on the region.

“While one-off investments in large infrastructure can affect a region for decades to come, environmental sustainability appears to be more heavily affected by slow-dynamics climate change processes,” Dr Boschetti said.

The results uncovered a need for tougher management strategies, particularly expansion of sanctuary zones and Marine Protected Areas, to protect resident marine species.

“These models project a future where both strategic and reactive planning is necessary and prediction becomes as urgent as standard adaptive management,” Dr Boschetti said.

“It builds the groundwork to ensure basic bookkeeping of ecological processes are in place and that expectation of future regional developments are realistic and consistent.”

The research, carried out under the Kimberley Marine Research Program, provides meaningful scientific information to support environmental decision making at a regional scale across several decades.