Posts

Project delivers a creative dive into Perth’s rich nearshore marine environment

An art exhibition, described by its creator as being like a snorkel through the vibrant nearshore waters of Perth’s beaches, has opened in Cottesloe.

The exhibition is the culmination of the Living Ocean Festival which involved 750 people and comprised events including 35 workshops, community beach walks, biodiversity surveys and marine science talks.

The festival was designed and delivered by artist and science communicator Angela Rossen.

“I wanted to create the feeling of snorkelling over a seagrass meadow and a reef,” Ms Rossen said.

The exhibition, in a gallery overlooking the ocean, features prints, paintings and photographs of everything from plankton and seagrass to migratory shorebirds and fish.

“The focus of our festival was the nearshore marine environment,” she said. “This is the part of the ocean close to the shore that is accessible to everyone and it’s full of unbelievable biodiversity.”

The artist, who has a passion for the ocean, has worked with the Western Australian Marine Science Institution. She also works on community outreach projects with other marine research organisations and local and state governments.

“Working with scientists deepens and broadens my understanding of natural systems and I am grateful for their support with species identification and helping me to communicate the complexity and wonder of natural systems.”

“I am really motivated to get everyone, especially children, curious about and involved in wanting to discover more about how the environment works. It is by growing a real heart connection to nature that people will want to act to conserve and protect our unique environment.”

“In my biodiversity projects we begin with the smallest creatures because they are the building blocks of ecosystems. In this instance we began with plankton and single celled organisms like coccolithophores.”

“Most people wouldn’t give a second thought to these tiny creatures, but they are stunningly important. They are also very beautiful.”

Ms Rossen opened the exhibition with a heartfelt and emotional plea for people to become actively engaged in conserving and protecting the ocean and terrestrial environment for future generations.

“We can’t pick and choose which species we will allow to become extinct. Every single creature is a link in the chain and if, because of human impacts, they disappear then the chain is broken.”

“Half the oxygen we breathe is created by plants in the ocean, so if we allow the ocean to heat and acidify beyond a certain point we can say goodbye to every second breath.”

She said some of the workshops involved children from local primary schools examining nature under magnification then expanding out to conceptualize ecosystems.

“Kids are naturally curious. They love discovering nature and documenting their findings. When they first see tiny creatures such as plankton they fall in love instantly.”

She is also inspired to encourage people who don’t see themselves as artistic.

“A lot of people miss out on the joy of being creative because, for one reason or another, they don’t trust themselves to do it.”

“I find that people always surprise themselves when they look at what they drew or painted, especially when they see their work up in the exhibition.”

Angela Rossen was the inaugural artist in residence with the Heritage Collective – a creative hub in the restored heritage Werne building in Cottesloe. More of Angela Rossen’s work can be seen at www.angelarossen.com

The Living Ocean exhibition is on until 30 January at the Linton and Kay Gallery at 40 Marine Parade Cottesloe.

Current systems crucial to life on earth

A crucial system of currents that takes 1,000 years to circulate the globe is being impacted by increasing ocean temperatures and will have a profound effect on the world’s climate if it further slows or shuts down altogether, by triggering more atmospheric temperature extremes.

Professor Nicole Jones, a physical oceanographer from The University of Western Australia, explained the meridional overturning circulation as part of the Western Australian Marine Science Institution’s Thinking Blue school outreach program.

“Cold and salty water forms in the Labrador Sea, between Canada and Greenland, as well as in the Weddell and Ross Seas, close to Antarctica, and then it descends into the deepest depths of the ocean and circulates around the ocean before coming back up to the surface closer to the equator,” Professor Jones said.

“It takes a millennium to transport the water from the surface, down to the bottom of the ocean and back to the surface again.”

She said the ocean system was crucial to many processes including transporting gases from the atmosphere down into the deep sea.

“This helps to regulate the amount of carbon dioxide in the atmosphere and also supplies oxygen to the deep ocean,” Professor Jones said.

“It also traps heat so plays a strong role in modulating what is happening in the atmosphere.”

But climate change is impacting the system.

“With climate change, water at the Poles is becoming fresher and also warmer and so it is not going to be able to sink to the same deep depths and that will weaken the return currents such as the Gulfstream,” Professor Jones said.

“So, it’s not only the cold currents that get weakened it’s the warmer currents at the surface.”

Professor Jones said measuring the circulation was challenging but there was evidence it was slowing. She said if it shut down, there would be dramatic atmospheric temperature decreases across Europe. In the southern hemisphere temperatures would be expected to increase.

Professor Jones’ presentation also covered sea level changes and climate change.

The presentation can be found here.

‘More than just teeth’: Shark Deck inspires respect for sharks

Spotting a shark while snorkelling as a child then, in a flash, realising it was gone was an early lesson on these supposed ‘monsters of the deep’ for marine biologist Dr Charlotte Birkmanis.

“I was 10 when I first saw a shark and I remember thinking that here was an animal that I’m supposed to be afraid of, but it couldn’t get away fast enough,” Dr Birkmanis said.

It fuelled a passion for ocean life in the scientist, who recently released Shark Deck, featuring 50 species of sharks with images of sharks on one side and information, including their diet, size, and one of her ‘fin facts’ on the back.

When the Director of the philanthropic Jock Clough Marine Foundation wrote Shark Deck, she made a point of including lesser-known species as well as the better-known tiger and great white sharks.

“There are more than 530 species of sharks in the world, yet we commonly only hear about a handful of them,” she said.

The variety is extraordinary —there is the bus-sized whale shark, the yellowish lemon shark and the tiny ‘glow in the dark’ pocket shark.

“The more I have learned about sharks, the more I am fascinated by them and I love sharing this with others through books, radio and television,” Dr Birkmanis said.

“I do a lot of public talks and interviews about sharks and our oceans, and I try to get people to think about sharks as more than just their teeth. I like to remind them the largest sharks eat plankton.”

Despite the facts about the animals, headlines scream about sharks stalking, lurking, attacking and prowling. They are described as rogues and monsters.

Many have alarmingly low populations and are threatened so Dr Birkmanis was delighted when The Washington Post recommended Shark Deck as “engaging” with “cool facts about the shark’s biology, habitat, range and more”.

Dr Birkmanis, an Adjunct Research Fellow at The University of Western Australia’s Oceans Institute, said the interest shown for the animals when she gives talks to schools and community groups and shares information on television and in social media was encouraging. So much so she’s been given the title of ‘PR Manager for sharks’.

“I think there is a genuine interest in sharks, but a lot of the scientific material is inaccessible,” she said.

Dr Birkmanis has tagged and dived with sharks across the Indian Ocean, in places such as the Chagos, Mozambique and South Africa, including white sharks.

“The way they move is incredible,” Dr Birkmanis said.

She is now continuing her research on sharks as a Postdoctoral Research Fellow with the Max Planck Centre, looking at shark movement, behaviour and how they may even be able to help us heal.

The Shark Deck follows Dr Birkmanis’ children’s book Little Shark Lulu is sleeping, a fun fact-filled fable about what goes on in the ocean when the sun goes down, told through the eyes of a little shark named Lulu. Notably Lulu has no teeth.

Sediment samples at the core of a model project

Dozens of core samples, taken from sediment around Cockburn Sound, will play a crucial role in the creation of a model of the area’s ecosystem to help inform environmental assessment of the proposed port.

The work, being done as part of the WAMSI Westport Marine Science Program, involved divers collecting three sediment cores from 12 sites and scientists analysing them at a specially created laboratory nearby.

The project is being run by Professor Bradley Eyre from Southern Cross University and Professor Matthew Hipsey, from The University of Western Australia.

Professor Eyre said the tubes of sediment and water were set up in a laboratory, in the garage of a beachside home, where conditions simulated in situ temperature and changing light conditions between night and day, at the sediment surface.

“Some analysis is best done when we have fresh samples, so we wanted to avoid any delays,” Professor Eyre said.

“Other samples will be sent back to the Southern Cross University campus near Byron Bay, which has the only instrumentation in Australia for some of the analyses.”

The 12 locations in the Sound, represent different types of shallow and deep sediments including muds, seagrass meadows, and sandy areas.

“In the laboratory, we were measuring the flux of oxygen and nutrients in and out of sediment including nutrients such as ammonia and phosphate,” Professor Eyre said

“Some of the tubes contained sediment with seagrass growing in it.

“We are also measuring a critical process in the sediments called denitrification.

“Denitrification is a natural process by which ecosystems such as Cockburn Sound can remove nitrogen.”

“It is a really important cleansing process but if the carbon load gets too high the process can be reduced.”

The researchers said data from the sediment testing would underpin new water quality modelling of the Cockburn Sound ecosystem.

“The data complements other key experimental data being collected as part of the WAMSI Westport Marine Science Program on the chemical and biological conditions, allowing the development of Cockburn Sound Integrated Ecosystem Model platform to help manage the system,” Professor Hipsey said

“What we are measuring will reflect what is happening currently in the Sound and when used alongside the modelling we will be able to predict what will happen under future scenarios.”

Plastic’s everywhere – so how do we stop it contaminating samples? 

Microplastics researchers need to think about everything from the jackets they wear in the field and their sampling containers to laboratory washing up methods to avoid contamination, according to a visiting biology professor who runs a plastics testing laboratory in the United States.

Dr Brian Walker, from Fairfield University in Fairfield Connecticut, told a recent workshop at The University of Western Australia’s Indian Ocean Marine Research Centre there had been a big growth in microplastics studies since 2010 as concerns mounted about the vast volume of plastics breaking up and being eaten by land and marine life.

“There is evidence these plastics are now affecting human health,” Dr Walker said.

“They can also be a vessel for bringing organisms such as viruses and neurotoxins into the body.”

The workshop was organised by Dr Belinda Cannell, from UWA’s Oceans Institute. UWA is one of the Western Australian Marine Science Institution’s partner organisations.

Dr Walker, who has worked for more than 20 years with penguins in Argentina, told the group he had developed some best practices for fieldwork and laboratory analysis to help ensure the highest standards for microplastics research. He said avoiding sample contamination involved scrutiny of every part of the process from the field to laboratory.

“When I have worked with collected penguin excrement, I try to get it as fresh as possible so it’s less likely to pick up micro or nano plastics in the environment although this isn’t always possible,” he said.

Dr Cannell, who is investigating microplastics in little penguins in Western Australia, said the seabirds’ nests can create challenges.

“Little penguins do not nest on the surface, so we don’t usually get to see a penguin defecating, so we scrape the samples from the ground,” Dr Cannell said.

Both researchers take care to avoid contamination by wearing cotton, rather than latex, gloves and retrieving samples with metal, not plastic, tools.

Dr Walker advises researchers to wear clothes made of natural fibres as much as possible because fabrics such as Polarfleece, which is widely used in cold climate garments, often shed synthetic fibres.

“When it’s raining, cotton is not an option so after one field trip where I wore a raincoat, I removed some of its fibres for testing to check they hadn’t got into the samples from the field,” he said.

“Back in my laboratory we hand wash glass sample jars with double filtered water and don’t use the dishwasher because of the plastic hoses.”

“The jars are always covered with foil rather than plastic and we even check to make sure there is no film on the foil.

“I can’t stress enough the importance of stopping contamination.”

Dr Walker said a new infrared microscope, he’d bought with the help of a grant, would speed up and improve the laboratory’s process for identifying microplastics on filters.

Coral reefs vital for ocean life

A quarter of all marine species depends on coral reefs but these vital parts of the oceans’ ecosystem are at risk from acidification, pollution, over-fishing and rising water temperatures.

The University of Western Australia’s PhD candidate Josh Bonesso spoke to high school students recently about the significance of coral reefs, as part of the Western Australian Marine Science Institution’s Thinking Blue outreach program. Josh was a finalist in the Student Scientist of the Year category in this year’s Premier’s Science Awards for his innovative research on coral reef islands. He’s also a keen science communicator.

“Coral reefs are nursery grounds for fish, they’re important too for megafauna and the building of coral reef islands that provide nesting areas for many species of seabirds and turtles,” Josh said.

“So, while coral reefs aren’t a large component of the ocean, about 25 percent of marine species rely on them directly and indirectly.”

Josh explained to the Year 12 students how coral reefs formed over thousands of years but that higher-than-normal temperatures and storm events caused by climate change threatened the survival of many coral varieties, particularly fragile branching corals. Mound corals were generally more resilient, but Josh said it was important for reefs not to become homogenous.

“At 34 degrees a species of branching coral, Acropora aspera, exerts a stress response and experiences bleaching.

“We know less about how these corals cope with stress at temperatures below bleaching, at around 32 degrees, and how this impacts their recovery from injury following storm events.”

“But experiments have been done in tanks at that lower temperature where the tops of coral branches are snipped off, to replicate storm damage, and they haven’t grown back,” Josh said.

Thinking Blue is WAMSI’s education outreach program which is designed to educate students about marine science and inspire them to do further studies in the field.

Josh is a PhD candidate at UWA’s Oceans Institute. He did his undergraduate science degree at La Trobe University and initially studied alpine and conservation ecology. But he told the students after a field trip to the Heron Island Research Station on the Great Barrier Reef, he ‘fell in love with coral reefs’.

You can watch Josh’s lecture here.