Project delivers a creative dive into Perth’s rich nearshore marine environment

An art exhibition, described by its creator as being like a snorkel through the vibrant nearshore waters of Perth’s beaches, has opened in Cottesloe.

The exhibition is the culmination of the Living Ocean Festival which involved 750 people and comprised events including 35 workshops, community beach walks, biodiversity surveys and marine science talks.

The festival was designed and delivered by artist and science communicator Angela Rossen.

“I wanted to create the feeling of snorkelling over a seagrass meadow and a reef,” Ms Rossen said.

The exhibition, in a gallery overlooking the ocean, features prints, paintings and photographs of everything from plankton and seagrass to migratory shorebirds and fish.

“The focus of our festival was the nearshore marine environment,” she said. “This is the part of the ocean close to the shore that is accessible to everyone and it’s full of unbelievable biodiversity.”

The artist, who has a passion for the ocean, has worked with the Western Australian Marine Science Institution. She also works on community outreach projects with other marine research organisations and local and state governments.

“Working with scientists deepens and broadens my understanding of natural systems and I am grateful for their support with species identification and helping me to communicate the complexity and wonder of natural systems.”

“I am really motivated to get everyone, especially children, curious about and involved in wanting to discover more about how the environment works. It is by growing a real heart connection to nature that people will want to act to conserve and protect our unique environment.”

“In my biodiversity projects we begin with the smallest creatures because they are the building blocks of ecosystems. In this instance we began with plankton and single celled organisms like coccolithophores.”

“Most people wouldn’t give a second thought to these tiny creatures, but they are stunningly important. They are also very beautiful.”

Ms Rossen opened the exhibition with a heartfelt and emotional plea for people to become actively engaged in conserving and protecting the ocean and terrestrial environment for future generations.

“We can’t pick and choose which species we will allow to become extinct. Every single creature is a link in the chain and if, because of human impacts, they disappear then the chain is broken.”

“Half the oxygen we breathe is created by plants in the ocean, so if we allow the ocean to heat and acidify beyond a certain point we can say goodbye to every second breath.”

She said some of the workshops involved children from local primary schools examining nature under magnification then expanding out to conceptualize ecosystems.

“Kids are naturally curious. They love discovering nature and documenting their findings. When they first see tiny creatures such as plankton they fall in love instantly.”

She is also inspired to encourage people who don’t see themselves as artistic.

“A lot of people miss out on the joy of being creative because, for one reason or another, they don’t trust themselves to do it.”

“I find that people always surprise themselves when they look at what they drew or painted, especially when they see their work up in the exhibition.”

Angela Rossen was the inaugural artist in residence with the Heritage Collective – a creative hub in the restored heritage Werne building in Cottesloe. More of Angela Rossen’s work can be seen at www.angelarossen.com

The Living Ocean exhibition is on until 30 January at the Linton and Kay Gallery at 40 Marine Parade Cottesloe.

Robot sowing the seeds for healthy seagrass meadows

A robot that plants seagrass seeds directly into the seabed is being trialled in Cockburn Sound as part of a program to speed up the restoration of badly depleted underwater meadows.

Seagrass, the ocean’s only flowering plant, is vital as a habitat for wildlife, for stabilising sediment and storing carbon. But pollution, marine heatwaves and development have wiped out vast areas of seagrass meadows.

Emeritus Professor Gary Kendrick, from The University of Western Australia’s School of Biological Sciences, who is a seagrass restoration project leader on the Western Australian Marine Science Institution (WAMSI) Westport Marine Science Program said it wasn’t enough to let ‘nature takes its course’ because the process was too slow.

“In Cockburn Sound, south of Perth, we are talking about a system that lost more than 3,000 hectares of seagrass from the mid-1950s to the 1980s,” Professor Kendrick said.

“Less than 100 hectares has come back.

“Even when we disperse seagrass seeds where the plants are needed, it can take two or three weeks for them to attach to the sediment and in that time, most are lost.”

The specially designed autonomous robot, which is powered by batteries, injects seeds into the seafloor which the research team said improves their chances of taking hold and growing into healthy, new plants.

It was developed by Ulysses Ecosystem Engineering, which is based in San Francisco.

Their team travelled to Perth to operate the machinery trial. The robot works by taking collected seeds and depositing them directly into the seabed. This has been shown to have a greater germination rate than traditional methods of restoration, which see the seeds scattered at the surface.

Professor Kendrick said the trial had come a long way.

“I have worked with the Ulysses engineers for one year and in that time, we have now got a full robotic system working.”

“Next year we are hoping we can demonstrate you can plant a hectare in a day.

“We are seeing a slow recovery at Kwinana Shelf and what we are really trying to do is speed it up and build resilience in a whole community.”

Researchers from UWA will return to the trial sites to assess for restoration success over the next year.

Will O’Brien, one of the co-founders of Ulysses said it is crucial that we develop automated solutions for seagrass restoration.

“Existing methods are too expensive and slow to achieve the results that are needed,” Mr O’Brien said.

“This trial is the first step in restoring WA’s seagrass coverage to historic levels and we are off to a very promising start.”

The trial will be supported by a $230,000 investment by Westport.

Photo credit : Nina Ho, UWA

Current systems crucial to life on earth

A crucial system of currents that takes 1,000 years to circulate the globe is being impacted by increasing ocean temperatures and will have a profound effect on the world’s climate if it further slows or shuts down altogether, by triggering more atmospheric temperature extremes.

Professor Nicole Jones, a physical oceanographer from The University of Western Australia, explained the meridional overturning circulation as part of the Western Australian Marine Science Institution’s Thinking Blue school outreach program.

“Cold and salty water forms in the Labrador Sea, between Canada and Greenland, as well as in the Weddell and Ross Seas, close to Antarctica, and then it descends into the deepest depths of the ocean and circulates around the ocean before coming back up to the surface closer to the equator,” Professor Jones said.

“It takes a millennium to transport the water from the surface, down to the bottom of the ocean and back to the surface again.”

She said the ocean system was crucial to many processes including transporting gases from the atmosphere down into the deep sea.

“This helps to regulate the amount of carbon dioxide in the atmosphere and also supplies oxygen to the deep ocean,” Professor Jones said.

“It also traps heat so plays a strong role in modulating what is happening in the atmosphere.”

But climate change is impacting the system.

“With climate change, water at the Poles is becoming fresher and also warmer and so it is not going to be able to sink to the same deep depths and that will weaken the return currents such as the Gulfstream,” Professor Jones said.

“So, it’s not only the cold currents that get weakened it’s the warmer currents at the surface.”

Professor Jones said measuring the circulation was challenging but there was evidence it was slowing. She said if it shut down, there would be dramatic atmospheric temperature decreases across Europe. In the southern hemisphere temperatures would be expected to increase.

Professor Jones’ presentation also covered sea level changes and climate change.

The presentation can be found here.

The messy, muddy work retrieving recorders from the sea floor

They are moments of excitement mixed with relief when researchers pull up their mud and weed covered hydrophones and recorders which have spent months on the seafloor quietly capturing the sounds of weather, marine life, boats and ships.

The equipment used for the ‘Noise’ theme project in the WAMSI Westport Marine Science Program was put out three times over a year in Cockburn Sound and left under water for four months.

The research team carefully noted the coordinates of the devices when they lowered them under water and connected them by rope to weights to stop them drifting.

The underwater recorders contain enough batteries to sustain them through the months of data collection and are built to withstand the pressures of saltwater, sediment and sometimes rough weather conditions.

Because of the boating and fishing activity in Cockburn Sound the team decided not to attach the devices to floats which would increase the possibility of ropes becoming snagged in propellers.

When it comes time to retrieve the devices, the team takes its boat to the drop sites using the GPS coordinates and uses a hook to grab the line. It can feel like looking for a needle in a haystack.

When they are found, the recorders are usually covered in mud and some are tangled in seagrass but once they are cleaned the precious data is retrieved.

What’s downloaded are the sounds of the Sound. There are wind and bubbles, jet skis, boats, large ships but also fish, dolphins, crabs and many noisy shrimp.

 

 

 

Ship safety system helping Sound’s noise research

A safety system that tracks ships and helps prevent collisions is being used as part of a study of noise levels in Cockburn Sound and their potential impact on marine life.

Cristina Tollefsen from Curtin University said researchers were using ship location information from the worldwide Automatic Identification System along with data from recorders on the seabed.

At the start of the project, researchers placed recorders with hydrophones (underwater microphones) at nine locations in and around the Sound.

“AIS gives us details of ships and their location which means we can attribute portions of the recording to certain vessel types,” Dr Tollefsen said.

“Because we can combine this information with data from the recorders, we have been able to measure the sound levels of all the different vessel classes from tugboats and the pilot vessel to the massive bulk carrier ships,” Dr Tollefsen said.

“Port activities require more than one vessel typically, so we wanted to capture a set of activities including the pilot boats meeting larger ships as they arrive and the tug boats assisting ships as they come into port.

“It’s less common in research to measure the combined noises but that is much more realistic.”

Dr Tollefsen, who is working on the project for the WAMSI Westport Marine Science Program, said there was growing awareness of the impact of noise on animals.

“Because light doesn’t penetrate very well under water, a lot of animals use sound to communicate,” Dr Tollefsen said.

“The best-known animals to do this are whales and dolphins but invertebrates and fish also use sound.

“If it’s too noisy from human activities, you can imagine that it’s harder for the animals to find a mate or find food.

“That’s why we’re doing this work is to understand the sounds in Cockburn Sound and whether there are ways to estimate a potential increase in noise or mitigate any increase if shipping traffic were to increase.”

Dr Tollefsen said a port in Vancouver, Canada had implemented a strategy to slow vessels on approach as a way of protecting the endangered population of orcas in the area.

She said by slowing the vessels, similar to a maritime equivalent of a traffic school zone, they had made the waters less noisy with the aim of reducing the impact of human-caused noise on the marine mammals.

Indigenous led research vessel launched with dockside cultural smoking ceremony

A newly-refurbished vessel was launched today to be used for a landmark research, training and environment rehabilitation collaboration in Shark Bay – an area which has been hit hard by devastating marine heatwaves.

The 23-metre ‘Marine 2’ is owned by The Jock Clough Marine Foundation, which offered it to the Indigenous-owned and operated Tidal Moon for its exclusive use. The event took place with a dockside cultural smoking ceremony at Fremantle’s Sardine Jetty.

Tidal Moon has a sea cucumber harvesting business and has applied for a license to help rehabilitate up to 1,000 square kilometres of seagrass in Shark Bay. The meadows were lost just over a decade ago in a series of marine heatwaves.

‘Marine 2’ will enable the training and employment of local Malgana People, as well as marine research delivered by the Western Australian Marine Science Institution (WAMSI) with its partners.

“Seagrass provides a vital habitat and breeding area for marine animals,” Mr Wear said.

“It also prevents the release of thousands of tonnes of carbon dioxide and is regarded as the ocean’s lungs.”

“Myself and Malgana Elders are honoured that Shark Bay’s Traditional Custodians will lead this exciting collaboration which brings together important marine research and innovative projects that benefit the environment.”

“We are combining Western marine science and Indigenous Sea Country knowledge.”

“This is also going to create new private sector job opportunities and give our young people new opportunities to care for Sea Country,” Mr Wear said.

WA philanthropist, businessman and Jock Clough Marine Foundation Co-Trustee, Jock Clough said he was looking forward to supporting the collaborative effort.

“This is a wonderful opportunity for Tidal Moon, with its Traditional Owners and custodians, WAMSI and the Jock Clough Marine Foundation to work together, and really make a difference to the knowledge of a very special place,” Mr Clough said.

WAMSI CEO Dr Luke Twomey said the organisation had developed a Science Plan for Shark Bay (Gathaagudu) and further research would provide essential data to help inform the way local and global marine ecosystems were managed. “Shark Bay is like the canary in the coalmine for climate change and our partner scientists will be able to make a real difference through this initiative,” Dr Twomey said.

Tidal Moon has been working with scientists from WAMSI’s partner institutions and with CSIRO to better understand the role of seagrass in Shark Bay’s ecosystem and the best ways to prevent future losses.

WAMSI manages major marine science projects through its partnership with Curtin University, Edith Cowan University, Murdoch University, The University of Western Australia as well as the Department of Biodiversity Conservation and Attractions, the Department of Water and Environmental Regulation, the Western Australian Museum, Australian Institute of Marine Science and the Department of Primary Industries and Regional Development.

Penguin ‘poop study’ to help unlock colony’s diet

Researchers from The University of Western Australia and Murdoch University are analysing DNA from the excrement of little penguins in Cockburn Sound to find out what, other than fish, they are eating and whether it is affecting their breeding.

Penguin researcher Dr Belinda Cannell, from UWA, said analysing the animals’ diet in greater detail would provide an insight into their breeding and how it related to the availability of their primary diet, which is fish.

Little penguins in Cockburn Sound (their northern most range in Western Australia) primarily eat anchovies, pilchards, scaly mackerel and sandy sprat.

Penguins are known to also feed on crustaceans, cephalopods and even jellyfish.

“If it’s a poor year and there are not a lot of fish around, the little penguins may be feeding more on other things such as jellyfish,” Dr Cannell said.

This could then have an impact on their ability to produce and raise young.

“This other food may not get them into the condition where they can breed and feed their young,” Dr Cannell said.

“It may be that the chicks don’t fatten up as quickly.”

She said diet made up one element of the project, which is part of the WAMSI Westport Marine Science Program.

Another methodology being used to determine diet composition is the analysis of stable isotopes of carbon, nitrogen and sulphur from the down of little penguin chicks and feathers from adults.

“Stable isotopes of carbon reflect primary production sources and is more enriched in inshore, seagrass dominated areas, compared to offshore food webs,” Dr Cannell said.

“The stable isotope of nitrogen increases up the food chain and can also increase between size classes of the same prey species.”

“Stable isotopes of sulphur can be useful to distinguish between offshore and inshore components in food webs and can also indicate if producers are using sulphur from seawater, which is more enriched, or from sediments which are less enriched.

“This gives us a better idea of the whole diet of these birds.”

Dr Cannell said stable isotopes assist with establishing diet composition.

“I presume little penguins are eating jellyfish, but we haven’t had stable isotopes for jellyfish until now.”

The Western Australian Museum provided samples to assist with the research.

Cockburn Sound research reports now online

Cockburn Sound research teams have started delivering project reports for their work on the WAMSI Westport Marine Science Program.

These are now published on WAMSI’s Cockburn Sound webpage under ‘Research Themes and Reports‘.

More than 100 scientists and researchers are working across 33 projects, helping to build a picture of the Sound’s environment and provide key input into the port design.

In one of the latest reports to be released, scientists have carried out a detailed literature review identifying potential invasive marine species which may have become established in Cockburn Sound, with procedures to mitigate the risk of introducing these to future Westport facilities.

Another project explores the potential effects of suspended sediment on fishes from dredging, while a social science study has identified and mapped 31 non-fishing recreational activities and 11 associated values for the Sound.

Reports will continue to be published on our website over the next few months.

 

Eco-design and pre-seeding among options to encourage healthy port marine life

Pre-seeding new port structures to encourage the colonisation of native species is one of the mitigation measures against invasive marine plants and animals, outlined in a new report prepared for the WAMSI Westport Marine Science Program.

The literature review by Curtin University School of Molecular and Life Sciences Adjunct Professor Fred Wells lists many of the invasive marine species that have been recorded in waters around Perth and mitigation measures that could be used during any port construction.

Pre-seeding works by attaching local, fast-growing species to a new structure. The common mussel is one option identified in the report.

Professor Wells said invasive marine species were a worldwide problem and shipping was the most common way they spread to coastal areas. Ninety-eight percent of trade in and out of Australia is on vessels.

“Invasive marine species are concentrated on artificial surfaces and eco-engineering is a new field that attempts to encourage biodiversity and prevent potential marine pests taking hold,” Professor Wells said.

“The risk of introducing new species is greatest during construction but experience during the construction boom in the Pilbara demonstrated the issue is manageable.”

Professor Wells said eco-design was a new and evolving field that could help improve the biodiversity of the marine community that develops underwater, while minimising the risk of invasive species.

“Current design procedures tend to create uniform habitats, such as seawalls with smooth vertical faces. The lack of habitat diversity reduces the biodiversity of the marine community that develops on the structure. “

“Increasing the habitat diversity of new immersed structures and pre-seeding them with native species appear to be the most promising ways for mitigating against species that can cause ecological harm and prove expensive.”

Professor Wells said the biggest threats from invasive species to marine ecosystems were introducing disease, displacing native species, changing the ecology of native communities, clogging pipes and damaging other critical infrastructure.

The report, which was done to understand potential risks, is a literature review of invasive marine species from Cottesloe to Cockburn Sound, including waters around Fremantle and the Swan River.

A comprehensive survey more than a decade ago recorded 60 introduced marine species living in WA waters. Three were on the national marine pest list. Four additional marine pests were subsequently recorded in WA.

“Fortunately, most introduced marine species are apparently innocuous, causing no known adverse effects and we know only a small portion become pests,” Professor Wells said.

 

 

Volunteers spring into action to help seagrass recovery in Cockburn Sound

A seagrass restoration program, that is helping to regenerate Cockburn Sound’s underwater meadows, has had a record number of volunteers helping to spread hundreds of thousands of seeds from the plants.

About 80 per cent of Cockburn Sound’s meadows were wiped out in the 1950s and 60s because of poor water quality. Seeds for Snapper harnesses community help, backed by scientific knowledge, to collect seagrass seeds and disperse them where they are most needed.

Research officer Rachel Austin, from The University of Western Australia’s School of Biological Sciences, who helps run Seeds for Snapper with fishing conservation charity OzFish, said volunteers helped disperse 670,000 seeds over 10 sites during November. They donated 1500 hours.

“It’s very simple, very scalable and results in much higher seeding density than what happens naturally,” Ms Austin said.

“We estimate that more than 90 percent of seagrass fruit ends up where it cannot grow, including on the beach and in deep water.

“We are able to collect the seeds and throw them into specially chosen areas where they are more likely to take hold.”

Rachel Austin with a beaker of seagrass seeds.

Rachel Austin from UWA with seagrass seeds at a volunteers’ day in Cockburn Sound.

“By doing what we are doing we can get substantially more seedlings in an area compared to what can happen naturally.”

She said the program had not only had a practical benefit in helping regenerate parts of the seabed but had also increased awareness of the importance of seagrass for storing carbon, stabilising the seabed and providing breeding areas and habitat for marine animals.

 

 

“If you want squid, fish and octopus you’ve got to have somewhere for them to live and that is your seagrass meadows,” Ms Austin said.

“About 200 hectares has regrown but we’re still missing 2,000 hectares.”

Seagrass restoration is among the research projects currently underway as part of the WAMSI Westport Marine Science Program.

OzFish Western Australia Program Manager, Steve Pursell, said 2023 was the second biggest year for Seeds for Snapper in terms of the number of seeds released into Cockburn Sound. Last year was the highest since it started six years ago.

“The program has really gained momentum,” Mr Pursell said.

“We had people from a range of backgrounds and all ages, helping out this year.

“We even had a volunteer fly in from New York, just to work on the project,” he said.

“Some volunteers who come along don’t initially realise the difference between seagrass and seaweed but they soon learn that, and many go on to become great advocates for the importance of seagrass and our habitat restoration work.”.

He said volunteer divers collected seagrass fruit in nets and other groups on shore worked at tanks to sort husks from the seeds. Volunteers and recreational boaters then took the seeds into Cockburn Sound to throw them back in the water at selected sites.

Ms Austin said she was heartened by the response to Seeds for Snapper from fishers they met at boat ramps.

“Public awareness around the importance of seagrass has really grown and the fishers we speak to are really enthusiastic. It gives you hope for the future.”

She said the program involving monitoring sites where seeds were dispersed.

“Our main species Posidonia australis (ribbon-weed) is quite a slow growing species so you’re talking a good five to 10 years before you have a dense meadow.

“But we have found incredible growth in some areas.

“Some sites are not as good, and we learn every year.

“At all our sites it does look like we are getting higher seedling densities than if it was left to nature.”

People who are interested in volunteering for the 2024 Seeds for Snapper program can find more information here or email seedsforsnapper@ozfish.org.au